Effect of Overpressure Formation on Reservoir Diagenesis and Its Geological Significance to LD Block of Yinggehai Basin
-
摘要: 莺歌海盆地异常地层压力的分布状况、异常地层压力条件下的流-岩相互作用以及其对储层成岩演化影响方面的研究尚未展开, 综合应用岩石薄片鉴定、扫描电镜分析、稳定同位素分析、流体包裹体均一温度测试等技术, 系统分析了莺歌海盆地LD区现今压力分布特征、超压环境下储层成岩作用特征及超压流体活动对储层成岩演化的影响.结果表明: (1)地层超压驱动深层热流体向上释放, 富含碳酸盐类离子成分的热流体运移到超压顶界面附近时由于温压条件变化而重新沉淀, 形成高含量的碳酸盐胶结物致密层; (2)地层超压通过抑制粘土矿物的转化来减少碳酸盐胶结物的生成和石英次生加大, 使原生孔隙得以有效保存; (3)LD区块储层普遍富含CO2, 在超压环境下CO2在流体中溶解度增大, 会大量生成H+; 另外一方面, 超压增加了LD区块有机酸的释放空间和时间, 促进溶蚀作用的产生.由此可知, 造成研究区中深部超压储层具有较高的孔隙度的主要因素为超压抑制了胶结物的生成, 其次为超压降低了机械压实作用及促进了次生孔隙的发育.Abstract: As to the Yinggehai basin, there is much room for further studies on the following issues including the distribution of abnormal pressure, the interaction of fluid and rock under the condition of abnormal pressure and the effect on diagenetic evolution. A systematic analysis on the distribution of overpressure, the effect on geological fluid activities and diagenetic evolution in Yinggehai basin is carried out by means of microscopy, scanning electron microscopy, isotope analysis and fluid inclusion homogenization temperature measurement based on the previous studies.The results show follows: (1) Overpressure drives the deep thermal fluid to release up. The thermal fluid which contains carbonate minerals is driven to the top interface of the overpressure and then deposits again with the changing pressure and temperature. The thermal fluid forms tight plugged zone of carbonate cementation with high content. (2) The overpressure reduces the material sources of carbonate cements and quartz secondary enlargement by inhibiting the transformation of clay minerals, so that the primary pores can be effectively preserved. (3) The reservoirs in LD block generally contain high content of CO2. In condition of overpressure, the solubility of CO2 in the fluid increases, which generates a large number of H+. On the other hand, overpressure increases the space and time for the release of organic acids in LD block and promotes the dissolution. It is concluded that the main reason for the high porosity in middle-deep overpressure reservoir of study area is that the overpressure constrains the forming of carbonate cement, and the other reason is that the decrease of compaction and the promotion of secondary pores.
-
Key words:
- Yinggehai basin /
- LD block /
- overpressure formation /
- fluid /
- diagenesis /
- petroleum geology /
- stratigraphy
-
图 5 研究区与LT区块相近深度压实作用镜下对比
a.LD21A井,2 097.00 m(超压环境),单偏光,压实作用弱,颗粒接触关系为点接触(A),偶见铁方解石(E),溶蚀作用强烈,泥质(D)呈杂基状分布,孔隙较好;b.LT1A井,2 105.00 m(常压环境),单偏光,压实作用较强,颗粒接触关系为线接触(A),云母被压弯压碎(B),刚性颗粒部分见压裂现象(C),溶蚀作用弱,泥质(D)呈杂基状分布,孔隙差;c.LD30A井,3 427.68 m(超压环境),单偏光,压实作用较弱,颗粒接触关系为线-点接触(A),长条状云母(B)保存较好,溶蚀作用强烈,孔隙较好;d.LT33A井,3 486.82 m(常压环境),单偏光,压实作用强烈,颗粒接触关系为凹凸-线接触(A),云母被压弯压碎(B),刚性颗粒部分见压裂现象(C),溶蚀作用弱,泥质(D)呈杂基状分布,孔隙差
Fig. 5. Comparison of compaction at the near depth in study area and LT block
图 6 研究区及附近主要胶结物镜下对比图片
a.LD30A井,3 250.44 m(超压顶界面),铁方解石(A)丰富,胶结交代碎屑颗粒,有孔虫生屑(B)体腔多被铁方解石充填,偶见石英加大现象(C),溶蚀作用弱,孔隙不发育;b.LD15A井,2 030.00 m(超压顶界面),菱铁矿(I)丰富,胶结交代碎屑颗粒,局部富集成斑块状或条带状产出,偶见石英加大现象(C),溶蚀作用弱,孔隙不发育;c.LD15A井,2 340.78 m(超压环境),压实作用弱,颗粒接触关系为游离-点接触,白云石(G)零星分布,溶蚀作用强烈,碎屑颗粒发生不同程度溶蚀,长石溶蚀形成大量铸模孔(E),孔隙好;d.LT26A井,2 404.00 m(常压环境),压实作用较强,颗粒接触关系为线接触,大量铁方解石(A)胶结交代,溶蚀弱,少量长石形成粒内溶孔(D),孔隙差;e.LD30A井,3 261.11 m(超压环境),压实作用较弱,长条状云母(H)保存完整,少量白云石(G),溶蚀作用强烈,碎屑颗粒大多形成粒内溶孔(D),长石溶蚀形成大量铸模孔(E),孔隙好;f.LT33A井,3 487.78 m(常压环境),压实作用强烈,颗粒接触关系为线-凹凸接触,大量粉、细晶白云石(G)胶结交代颗粒,溶蚀作用弱,石英普遍加大(C),孔隙差;g.LD30A井,3 699.00 m(超压环境),扫描电镜,细-极细砂岩,毛发状伊利石和片状绿泥石垂直于颗粒表面生长,使喉道变窄;h.LD30A井,3 422.17 m(超压环境),扫描电镜,细-极细砂岩,孔隙发育好,颗粒溶蚀严重,部分颗粒形成粒内溶孔;i.LD30A井,3 438.66 m(超压环境),扫描电镜,细-极细砂岩,孔隙发育好,溶蚀现象显著,片状喉道连通
Fig. 6. Main cement types in study area and nearby
表 1 LD区块和LT区块砂岩岩石学特征主要参数对比
Table 1. The contrast of sandstone petrology characteristics in LD block and LT block
区块 层位 砂岩类型 杂基(%) 胶结物(%) 结构成熟度 成分成熟度 粒径(μm) 视孔隙(%) LD 乐东组 含泥质细-极细粒长石石英砂岩 17(6.1~22.6) 8.6(3.6~14.3) 较低、低 7.6(4.2~13.5) 84.4(54.1~174.3) 19.9(11.6~24.6) 莺歌海组 含泥质细-极细粒岩屑石英砂岩 11(5.3~22.3) 6.6(2.1~11.7) 低、较低 7.1(4.6~14.6) 66.9(52.5~172.6) 23.6(10.8~26.2) 黄流组 含泥质极细砂质岩屑石英砂岩 16(12.1~23.6) 3.4(1.3~6.7) 较低、低 5.9(4.3~13.8) 57.7(43.1~97.5) 15.8(9.5~18.1) 梅山组 泥质极细砂质岩屑石英砂岩 24(18.0~40.1) 4(2.4~5.8) 极低、低 - 37(15.3~84.6) 12.8(4.9~15.4) LT 乐东组 含泥质细-极细粒岩屑石英砂岩 12.3(6.5~18.0) 5.6(2.2~6.8) 中等、较低 6.1(4.6~12.3) 88(73.5~116.7) 20.7(8.5~23.8) 莺歌海组 含泥质极细-细粒长石石英砂岩 12.7(7.0~20.1) 7.8(3.0~16.4) 中等、较低 6.2(3.9~13.1) 123(84.5~401.6) 17.4(9.0~22.0) 黄流组 含泥质粗-中粒长石石英砂岩 16.7(6.8~34.4) 9.6(5.6~17.1) 较低、低 4.9(2.3~11.5) 373(87.6~666.9) 10.1(6.3~14.9) 梅山组 含泥质中-粗粒长石石英砂岩 13.4(5.7~29.9) 8.3(4.7~12.8) 中等、较低 3.1(1.5~10.8) 601(105.6~1 437.5) 7.9(5.2~11.9) 表 2 LD区块和LT区块砂岩层段孔隙类型定量分析及压实率对比
Table 2. The contrast of quantitative analysis and compaction rate to sandstone pore types in LD block and LT block
层位 原生孔(%) 原生孔比例(%) 次生孔(%) 次生孔比例(%) 面孔率(%) 压实率(%) 原生粒间孔 生物体腔孔 杂基微孔 长石溶孔 粒间溶蚀孔 铸模孔+超大孔 其他溶蚀孔 乐东组 14.3(8.9~17.3) 1(0.3~2.5) 2.1(1.6~3.2) 85.2(81.2~94.3) 0.4(0.1~0.8) 1.2(0.3~2.1) 0.2(0.1~0.5) 0.7(0.2~1.9) 14.8(5.7~18.8) 19.9(11.6~24.6) 0.43(0.38~0.59) 莺歌海组 15.4(7.8~17.3) 0.4(0.1~0.7) 0.5(0.3~2.0) 68.9(58.3~84.8) 2.2(0.8~2.9) 2.2(0.5~2.6) 2.1(0.9~3.4) 0.8(0.3~1.9) 31.1(15.2~41.7) 23.6(10.8~26.2) 0.45(0.44~0.62) 黄流组 10.8(8.0~11.5) 0.1(-) 0.1(-) 65.1(57.9~81.3) 1.5(0.4~3.2) 2.1(0.4~2.9) 0.4(0.2~0.6) 1.5(0.5~2.1) 34.9(18.7~42.1) 15.8(9.5~18.1) 0.67(0.55~0.77) 梅山组 7.5(3.3~9.8) 0.1(-) 0 57.9(49.5~76.7) 0.9(0.2~1.6) 2.5(0.5~3.7) 0 1.8(0.3~2.8) 40.3(33.3~50.5) 12.8(4.9~15.4) 0.71(0.61~0.81) 莺歌海组 13.7(7.9~15.7) 0 1.2(0.3~2.1) 85.6(83.5~92.2) 0.5(0.2~0.9) 1.5(0.2~2.4) 0.2(0.1~0.5) 0.3(0.1~0.5) 14.4(7.8~16.5) 17.4(7.8~16.5) 0.60(0.52~0.81) 黄流组 6.7(2.6~8.3) 0 0.5(0.1~1.0) 71.5(66.2~88.4) 1.7(0.6~2.7) 0.7(0.2~1.8) 0.2(0.1~0.4) 0.3(0.1~0.8) 28.5(11.6~33.8) 10.1(6.3~14.9) 0.76(0.66~0.90) 梅山组 5.4(3.8~7.4) 0 0.5(0.1~0.8) 73.7(64.1~90.7) 1.2(0.4~2.0) 0.5(0.1~0.9) 0.1(-) 0.2(0.1~0.6) 26.3(9.3~35.9) 7.9(5.2~11.9) 0.81(0.71~0.91) 表 3 碳酸盐胶结物稳定同位素值及形成温度
Table 3. Stable isotope values of carbonate cement and formation temperature
井号 深度(m) 超压顶界面深度(m) 矿物 δ13C(‰,PDB) δ18O(‰,PDB) 形成温度(℃) LD15A 1 844.7 2 030 含铁白云石 -1.875 -7.820 92.2 LD15A 1 849.8 2 030 含铁白云石 -1.175 -8.383 96.6 LD15A 1 867.5 2 030 含铁白云石 -1.065 -7.916 92.9 LD15A 1 863.4 2 030 含铁白云石 -0.974 -7.936 93.1 LD15A 1 863.8 2 030 含铁方解石 -0.860 -7.670 56.9 LD15A 2 235.1 2 030 含铁白云石 -1.100 -9.600 106.7 LD15A 2 244.9 2 030 含铁白云石 -1.200 -8.700 99.2 LD8A 1 652.0 1 700 含铁白云石 -2.700 -8.160 94.9 LD8A 1 654.0 1 700 含铁白云石 -2.960 -8.260 95.6 LD28A 1 633.5 1 650 含铁方解石 -1.820 -4.600 38.6 LD28A 1 641.0 1 650 含铁方解石 -2.080 -4.560 38.4 LD30A 3 258.4 3 250 含铁白云石 -2.880 -13.400 144.6 LD30A 3 422.6 3 250 方解石 -2.958 -11.412 84.5 注:温度分别按Keith and Weber(1964)的(铁)白云石公式和(铁)方解石公式进行计算. -
[1] Ajdukiewicz, J.M., Nicholson, P.H., Esch, W.L., 2010. Prediction of Deep Reservoir Quality Using Early Diagenetic Process Models in the Jurassic Norphlet Formation, Gulf of Mexico. AAPG Bulletin, 94(8): 1189-1227. doi: 10.1306/04211009152 [2] Duan, W., Chen, J.D., Luo, C.F., et al., 2013. Effects of Formation Overpressures on Diagensis in the Dongfang Block of Yinggehai Basin. Acta Petrolei Sinica, 34(6): 1049-1059 (in Chinese with English abstract). http://www.doaj.org/doaj?func=abstract&id=1579011&recNo=41&toc=3&uiLanguage=en [3] Hao, F., 2005. Kinetics of Hydrocarbon Generation and Mechanisms of Petroleum Accumulation in Overpressure Basin. Science Press, Beijing (in Chinese). [4] Hao, F., Li, S.T., Sun, Y.C., et al., 1996. Organic Matter Maturation and Petroleum Generation Model in the Yinggehai and Qiongdongnan Basins. Science in China (Series D), 39(6): 650-658. [5] Hao, F., Li, S.T., Dong, W.L., et al., 1998. Abnormal Organic-Matter Maturation in the Yinggehai Basin, South China Sea: Implications for Hydrocarbon Expulsion and Fluid Migration from Overpressured Systems. Journal of Petroleum Geology, 21(4): 427-444. doi: 10.1111/j.1747-5457.1998.tb00794.x [6] Hao, F., Li, S.T., Gong, Z.S., et al., 2000. Thermal Regime, Interreservoir Compositional Heterogeneities, and Reservoir-Filling History of the Dongfang Gas Field, Yinggehai Basin, South China Sea: Evidence for Episodic Fluid Injections in Overpressured Basins?AAPG Bulletin, 84(5): 607-626. http://ci.nii.ac.jp/naid/80012161621 [7] Hao, F., Sun, Y.C., Li S.T., et al., 1995. Overpressure Retardation of Organic-Matter Maturation and Petroleum Generation: A Case Study from the Yinggehai and Qiongdongnan Basins, South China Sea. AAPG Bulletin, 79(4): 551-562. doi: 10.1306/8d2b158e-171e-11d7-8645000102c1865d [8] He, J.X., Zhang, W., Chen, G., 1995. A Preliminary Study on the Genesis of CO2 Gas and Characteristics in Its Migration and Accumulation in the Yinggehai Basin. Petroleum Exploration and Development, 22(6): 8-15 (in Chinese with English abstract). [9] Houseknecht, D.W., 1987. Assessing the Relative Importance of Compaction Processes and Cementation to Reduction of Porosity in Sandstones. AAPG Bulletin, 71(6): 633-642. doi: 10.1306/9488787f-1704-11d7-8645000102c1865d [10] Hunt, J.M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bulletin, 74(1): 1-12. http://ci.nii.ac.jp/naid/80005099695 [11] Jansa, L.F., Urrea, V.H.N., 1990. Geology and Diagenetic History of Overpressured Sandstone Reservoirs, Venture Gas Field, Offshore Nova Scotia, Canada. AAPG Bulletin, 74(10): 1640-1658. doi: 10.1306/0c9b2551-1710-11d7-8645000102c1865d [12] Jeans, C.V., 1994. Clay Diagenesis, Overpressure and Reservoir Quality—An Introduction. Clay Minerals, 29(4): 415-424. doi: 10.1180/claymin.1994.029.4.02 [13] Keith, L.M., Weber, J.N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochim. et Cosmochim. Acta, 28(11): 1787-1816. doi: 10.1016/0016-7037(64)90022-5 [14] Lavenu, A.P.C., Lamarche, J., Gallois, A., et al., 2013. Tectonic versus Diagenetic Origin of Fractures in a Naturally Fractured Carbonate Reservoir Analog (Nerthe Anticline, Southeastern France). AAPG Bulletin, 97(12): 2207-2232. doi: 10.1306/04041312225 [15] Li, Z., Chen, J.S., Guan, P., 2006. Scientific Problems and Frontiers of Sedimentary Diagenesis Research in Oil-Gas-Bearing Basins. Acta Petrologica Sinica, 22(8): 2113-2122 (in Chinese with English abstract). http://www.oalib.com/paper/1472034 [16] Lipinski, C.J., Franseen, E.K., Goldstein, R.H., 2013. Reservoir Analog Model for Oolite-Microbialite Sequences, Miocene Terminal Carbonate Complex, Spain. AAPG Bulletin, 97(11): 2035-2057. doi: 10.1306/06261312182 [17] Lü, M., 1999. Reservoir Characteristics of the Gas-Bearing Area in Ying-Qiong Basin. Natural Gas Industry, 19(1): 20-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG901.005.htm [18] McLendon, W.J., Koronaios, P., Enick, R.M., et al., 2014. Assessment of CO2 Soluble Non-Ionic Surfactants for Mobility Reduction Using Mobility Measurements and CT Imaging. Journal of Petroleum Science and Engineering, 119: 196-209. doi: 10.1016/j.petrol.2014.05.010 [19] Meng, F.J., Xiao, L.H., Xie, Y.H., et al., 2012. Abnormal Transformation of the Clay Minerals in Yinggehai Basin and Its Significances. Acta Sedimentologica Sinica, 30(3): 469-476 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201203008.htm [20] Meng, Y.L., Huang, W.B., Wang, Y.C., et al., 2006. A Kinetic Model of Clay Mineral Tranaformation in Overpressure Setting and Its Applications. Acta Sedimentologica Sinica, 24(4): 461-467 (in Chinese with English abstract). http://www.researchgate.net/publication/288935420_A_kinetic_model_of_clay_mineral_transformation_in_overpressure_setting_and_its_applications [21] Morad, S., Ketzer, J.M., de Ros, L.F., 2000. Spatial and Temporal Distribution of Diagenetic Alterations in Siliciclastic Rocks: Implications for Mass Transfer in Sedimentary Basins. Sedimentology, 47: 95-120. doi: 10.1046/j.1365-3091.2000.00007.x [22] Mork, M.B.E., 2013. Diagenesis and Quartz Cement Distribution of Low-Permeability Upper Triassic-Middle Jurassic Reservoir Sandstones, Longyearbyen CO2 Lab Well Site in Svalbard, Norway. AAPG Bulletin, 97(4): 577-596. doi: 10.1306/10031211193 [23] Nguyen, B.T.T., Jones, S.J., Goulty, N.R., et al., 2013. The Role of Fluid Pressure and Diagenetic Cements for Porosity Preservation in Triassic Fluvial Reservoirs of the Central Graben, North Sea. AAPG Bulletin, 97(8): 1273-1302. doi: 10.1306/01151311163 [24] Ors, O., Sinayuc, C., 2014. An Experimental Study on the CO2-CH4 Swap Process between Gaseous CO2 and CH4 Hydrate in Porous Media. Journal of Petroleum Science and Engineering, 119: 156-162. doi: 10.1016/j.petrol.2014.05.003 [25] Pei, J.X., Yu, J.F., Wang, L.F., et al., 2011. Key Challenges and Strategies for the Success of Natural Gas Exploration in Mid-Deep Strata of the Yinggehai Basin. Acta Petrolei Sinica, 32(4): 573-579 (in Chinese with English abstract). http://www.researchgate.net/publication/285874266_Key_challenges_and_strategies_for_the_success_of_natural_gas_exploration_in_mid-deep_strata_of_the_Yinggehai_Basin [26] Sakhaee-Pour, A., Bryant, S. L, 2014. Effect of Pore Structure on the Producibility of Tight-Gas Sandstones. AAPG Bulletin, 98(4): 663-694. doi: 10.1306/08011312078 [27] Sneider, R.M., 1988. Reservoir Description for Exploration and Development: What is Needed and When. AAPG Bulletin, 72(12): 1522-1523. http://www.researchgate.net/publication/249895326_Reservoir_Description_for_Exploration_and_Development_What_is_Needed_and_When_ABSTRACT [28] Tingay, M.R.P., Morley, C.K., Laird, A., et al., 2013. Evidence for Overpressure Generation by Kerogen-to-Gas Maturation in the Northern Malay Basin. AAPG Bulletin, 97(4): 639-672. doi: 10.1306/09041212032 [29] Wilkinson, M., Darby, D., Haszeldine, R.S., et al., 1997. Secondary Porosity Generation during Deep Burial Associated with Overpressure Leak-off: Fulmar Formation, United Kingdom Central Graben. AAPG Bulletin, 81(6): 803-813. http://aapgbull.geoscienceworld.org/content/81/5/803 [30] Wilson, A.M., Fenstemaker, T., Sharp, J.M., 2003. Abnormally Pressured Beds as Barriers to Diffusive Solute Transport in Sedimentary Basins. Geofluids, 3(3): 203-212. doi: 10.1046/j.1468-8123.2003.00060.x [31] Xie, X.N., Jiao, J.J., Xiong, H.H., 2003. Underpressure System and Forming Mechanism in the Shiwu Depression of Songliao Basin. Earth Science—Journal of China University of Geosciences, 28(1): 61-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200301011.htm [32] Xie, X.N., Liu, X.F., Zhao, S.B., et al., 2004. Fluid Flow and Hydrocarbon Migration Pathways in Abnormally Pressured Environments. Earth Science—Journal of China University of Geosciences, 29(5): 589-595 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx200405014 [33] Xie, Y.H., Huang, B.J., 2014. Characteristics and Accumulation Mechanisms of the Dongfang 13-1 High Temperature and Overpressured Gas Field in the Yinggehai Basin, the South China Sea. Science China Earth Sciences, 44(8): 1731-1739 (in Chinese). http://www.ingentaconnect.com/content/ssam/16747313/2014/00000057/00000011/art00021 [34] Xie, Y.H., Zhang, Y.Z., Li, X.S., et al., 2012. Main Controlling Factors and Formation Models of Natural Gas Reservoirs with High-Temperature and Overpressure in Yinggehai Basin. Acta Petrolei Sinica, 33(4): 601-609 (in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/142167 [35] Yu, Z.C., Yang, S.Y., Liu, L., et al., 2012. An Experimental Study on Water-Rock Interaction during Water Flooding in Formations Saturated with CO2. Acta Petrolei Sinica, 33(6): 1032-1042 (in Chinese with English abstract). http://www.researchgate.net/publication/287528219_An_experimental_study_on_water-rock_interaction_during_water_flooding_in_formations_saturated_with_CO2 [36] 段威, 陈金定, 罗程飞, 等, 2013. 莺歌海盆地东方区块地层超压对成岩作用的影响. 石油学报, 34(6): 1049-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306003.htm [37] 郝芳, 2005. 超压盆地生烃作用动力学与油气成藏机理. 北京: 科学出版社. [38] 何家雄, 张伟, 陈刚, 1995. 莺歌海盆地CO2成因及运聚特征的初步研究. 石油勘探与开发, 22(6): 8-15. doi: 10.3321/j.issn:1000-0747.1995.06.013 [39] 李忠, 陈景山, 关平, 2006. 含油气盆地成岩作用的科学问题及研究前沿. 岩石学报, 22(8): 2113-2122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608000.htm [40] 吕明, 1999. 莺-琼盆地含气区储层特征. 天然气工业, 19(1): 20-24. doi: 10.3321/j.issn:1000-0976.1999.01.006 [41] 孟凡晋, 肖丽华, 谢玉洪, 等, 2012. 莺歌海盆地黏土矿物异常转化及其地质意义. 沉积学报, 30(3): 469-476. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201203008.htm [42] 孟元林, 黄文彪, 王粤川, 等, 2006. 超压背景下粘土矿物转化的化学动力学模型及应用. 沉积学报, 24(4): 461-467. doi: 10.3969/j.issn.1000-0550.2006.04.001 [43] 解习农, 焦赳赳, 熊海河, 2003. 松辽盆地十屋断陷异常低压体系及其成因机制. 地球科学——中国地质大学学报, 28(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200301011.htm [44] 解习农, 刘晓峰, 赵士宝, 等, 2004. 异常压力环境下流体活动及其油气运移主通道分析. 地球科学——中国地质大学学报, 29(5): 589-595. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200405013.htm [45] 裴健翔, 于俊峰, 王立锋, 等, 2011. 莺歌海盆地中深层天然气勘探的关键问题及对策. 石油学报, 32(4): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104004.htm [46] 谢玉洪, 黄保家, 2014. 南海莺歌海盆地东方13-1高温高压气田特征与成藏机理. 中国科学: 地球科学, 44(8): 1731-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408013.htm [47] 谢玉洪, 张迎朝, 李绪深, 等, 2012. 莺歌海盆地高温超压气藏控藏要素与成藏模式. 石油学报, 33(4): 601-609. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204010.htm [48] 于志超, 杨思玉, 刘立, 等, 2012. 饱和CO2地层水驱过程中的水-岩相互作用实验. 石油学报, 33(6): 1032-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201206017.htm