Simulation to Channel on-Board Spectra of ASTER Based on MODTRAN
-
摘要: 由于轨传感器位置影响, 传感器接收的能量不完全来自地物的反射, 地面与传感器间大气辐射能量的作用同样不可忽略.通过中分辨率大气辐射传输模型(moderate resolution atmosphere transmittance and radiance code, MODTRAN)将辐射传输过程与传感器光谱响应函数进行耦合运算, 基于二长花岗岩、正长岩、石英正长岩及石英闪长岩的地面实测光谱数据及测量时大气和几何条件, 完成了4种岩性先进星载热发射和反射辐射仪(advanced spaceborne theemal emission and reflection radiometer, ASTER)通道星上光谱的模拟, 建立了实测光谱数据与星上光谱数据间的联系, 证明将地面与传感器间大气辐射影响耦合到传感器接收地面反射能量过程中的必要性, 从而为多光谱影像的形成和应用提供了支持.
-
关键词:
- 中分辨率大气辐射传输模型 /
- 光谱模拟 /
- 地面实测光谱 /
- 星上光谱 /
- 遥感
Abstract: Due to the location of sensor, the altitude intercept of ground and sensor can't be ignored. In addition, the atmospheric radiation energy contribution also can't be get rid of since the energy which the sensor gets is not all from the terrain reflection. That is the reason why ground measured data is smooth and continuous curve, while the on-board data is discrete line. The coupling calculation of radiative process and spectral response function is realized based on MODTRAN (moderate resolution atmosphere transmittance and radiance code) in this paper, starting from the ground measured spectral data of Monnogranite, quartz syenite, syenite and quartz diorite and the atmospheric and geometric conditions then completes the ASTER (advanced spaceborne theemal emission and reflection radiometer) channel on-board spectrum simulation process, and which establishes the contact of ground spectrum and on-board one, and proves the necessity of the coupling process of atmospheric impact and process of receiving the ground reflection energy of the sensor, which offers support for the formation of multispectral image.-
Key words:
- MODTRAN /
- spectral simulation /
- ground measured spectrum /
- on-board spectrum /
- remote sensing
-
表 1 MODTRAN模型参数
Table 1. The parameters of MODTRAN
参数 要求 模拟取值 大气类型 自选 中纬度夏季大气 地面反射率 插值后反射率值 插值后反射率值 响应函数文件 将ASTER传感器响应函数(图 1)输出为ASCII值,根据ASTER传感器波段特点以每个波段中心波长为起始修改响应函数文件,并在模型中匹配正确路径 DATA/ASTER.txt 气象视距 测量记录 23.00 km 高程 测量记录 4.352 10 km 传感器天顶角 0°~90° 0° 太阳天顶角 0°~90° 27.05° 方位角 0°~360° 146.527° 波长范围 350~2 500 nm 350~2 500 nm -
[1] Abreu, L.W., Anderson, G.P., 1996. The MODTRAN 2/3 Report and LOWTRAN 7 Model. Contract, 19628(91-C): 132. http://www.researchgate.net/publication/281606050_The_MODTRAN_23_Report_and_LOWTRAN_7_MODEL [2] Acharya, P.K., Berk, A., Anderson, G.P., et al., 1999. MODTRAN4: Multiple Scattering and Bidirectional Reflectance Distribution Function (BRDF) Upgrades to MODTRAN. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, 12: 354-362. doi: 10.1117/12.366389 [3] Dong, Y.G., Xiao, H.L., Guo, K.Y., et al., 2002. Characteristics of Metallogenic Zoning in West Kunlun Mountains. Mineral Deposits, 21(S1): 113-116 (in Chinese). [4] Jiao, B.L., Gao, Z. Q, Li, S.J., et al., 2007. Atmospheric Radiative Transfer Model and Its Software. CACIS, Shanghai, 386-390 (in Chinese). [5] Li, B., Yan, L., Zhang, L.F., 2010. Evaluation of Sensor Spectral Parameters for the Simulation Accuracy of the Vegetation Spectrum. Spectroscopy and Spectral Analysis, 30(7): 1843-1847(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/20827983 [6] Mao, K.B., Qin, Z.H., 2004. The Transmission Model of Atmospheric Radiation and the Computation of Transmittance of MODTRAN. Geomatics & Spatial Information Technology, 27(4): 1-3(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBCH200404001.htm [7] Wang, Q., Chen, X., Chen, J.P., et al., 2010. Adjacency Effect Correction Study of ASTER Image Based on the Synchronized Measured Spectral Data. Remote Sensing Technology and Application, 25(4): 567-573 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YGJS201004020.htm [8] Wu, C.Q., Tong, Q.X., Zheng, L.F., 2005. Pretreatment of Flied and Image Spectra Data. Remote Sensing Technology and Application, 20(5): 506-511(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS200505009.htm [9] Yang, G.J., Liu, Q.H., Liu, Q., et al., 2009. Mid-Infrared Atmosphere Radiation Transfer Analytic Model and Remote Sensing Images Simulation. Spectroscopy and Spectral Analysis, 29(3): 629-634(in Chinese with English abstract). [10] Zhang, F., Toshpolat, T., Ding, J.L., et al., 2012. Simulation and Subsection between Fields Measured Endmember Spectrum and Multi-Spectrum Image of TM. Opto-Electronic Engineering, 39(6): 62-70(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=41952239 [11] Zhang, T., Ding, J.L., Wang, F., 2010. Simulation of Image Multi-Spectrum Using Field Measured Endmember Spectrum. Spectroscopy and Spectral Analysis, 30(11): 2889-2893(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/21284146 [12] 董永观, 肖惠良, 郭坤一, 等. 2002. 西昆仑地区成矿带特征. 矿床地质, 21(S1): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1036.htm [13] 焦斌亮, 高志强, 李素静, 等, 2007. 大气辐射传输模型及其软件. 2007年全国第18届计算机技术与应用(CACIS)学术会议论文集, 386-390. [14] 李博, 晏磊, 张立福, 2010. 传感器光谱指标对植被光谱模拟精度的影响. 光谱学与光谱分析, 30(7): 1843-1847. doi: 10.3964/j.issn.1000-0593(2010)07-1843-05 [15] 毛克彪, 覃志豪, 2004. 大气辐射传输模型及MODTRAN中透过率计算. 测绘与空间地理信息, 27(4): 1-3. doi: 10.3969/j.issn.1672-5867.2004.04.001 [16] 王倩, 陈雪, 陈建平, 等, 2010. 基于同步实测光谱数据的ASTER影像邻近效应校正研究. 遥感技术与应用, 25(4): 567-573. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201004020.htm [17] 吴传庆, 童庆禧, 郑兰芬, 2005. 地面、图像光谱的预处理. 遥感技术与应用, 20(5): 506-511. doi: 10.3969/j.issn.1004-0323.2005.05.010 [18] 杨贵军, 柳钦火, 刘强, 等, 2009. 中红外大气辐射传输解析模型及遥感成像模拟. 光谱学与光谱分析, 29(3): 629-634. doi: 10.3964/j.issn.1000-0593(2009)03-0629-06 [19] 张飞, 塔西甫拉提·特依拜, 丁建丽, 等, 2012. 实测端元光谱和多光谱图像之间的模拟与细分. 光电工程, 39(6): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201206015.htm [20] 张婷, 丁建丽, 王飞, 2010. 基于实测端元光谱的多光谱图像光谱模拟研究. 光谱学与光谱分析, 30(11): 2889-2893. doi: 10.3964/j.issn.1000-0593(2010)11-2889-05