Storage Model Design and Implementation of High Resolution and Hyperspectral Remote Sensing Image Based on NoSQL
-
摘要: 如何高效存储、管理呈几何增长的高分辨率、高光谱遥感影像数据, 实现遥感数据的快速处理、检索和可视化是急需解决的问题.应用非关系型数据库技术, 设计了由遥感元数据库、遥感影像数据库以及影像金字塔3个部分组成的海量遥感影像存储模型; 建立了由硬件支撑层、数据层、数据服务层及应用层组成的遥感影像存储中间件.通过实验分析, 验证了基于非关系数据库的遥感影像数据存储模型及中间件对影像数据的读写、提取性能优于传统的关系数据库.研究成果可满足高分高光谱遥感探测与评价模型对海量影像高效存储、管理的需求, 具有重要的实用价值.Abstract: It is an issue to be addressed as how to efficiently store and manage massive data that in high resolution and high spectral remote sensing images, and achieve rapid processing, retrieval and visualization of remote sensing data is the problem to be solved. Using non-relational database technology, we designed massive image storage model consists of remote sensing metadata database, image database and image pyramid; set up the remote sensing image storage middleware that consists of the hardware support layer, data layer, data service layer, and application layer. Experiment verifies the remote sensing image data storage model and middleware that based on non-relational database is superior to relational database for video data read and write. Research results prove have great practical value for efficiently storage and management of massive remote sensing image data.
-
Key words:
- remote sensing image /
- not only structured query language(NoSQL) /
- metadata /
- pyramid
-
表 1 不同大小影像数据集入库/出库平均时间
Table 1. Average time of different size image data collection of inbound/outbound
数据集(MB) Couchbase Oracle 87.5 入库时间:5.695 入库时间:17.254 出库时间:5.747 出库时间:14.704 351.0 入库时间:21.258 入库时间:61.686 出库时间:21.846 出库时间:65.031 879.0 入库时间:55.289 入库时间:187.422 出库时间:55.151 出库时间:186.133 1 167.0 入库时间:67.600 入库时间:247.507 出库时间:66.910 出库时间:217.216 1 310.0 入库时间:80.624 入库时间:273.341 出库时间:83.906 出库时间:340.847 2 048.0 入库时间:124.913 入库时间:529.176 出库时间:164.234 出库时间:614.513 -
[1] Fan, K., 2010. An Overview of NoSQL Database. Programmer, (6): 76-78(in Chinese). [2] Fan, X.B., Chen, H., 2006. Key Technology Research of High-volume Image Database Management System. Computer Engineering and Applications, (30): 10-12, 37 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_computer-engineering-applications_thesis/0201241368576.html [3] Lai, J.B., Luo, X.L., Yu, T., et al., 2013. Remote Sensing Data Organization Model Based on Cloud Computing. Computer Science, 40(7): 80-83, 115 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJA201307017.htm [4] Li, X.W., 2006. Review of the Project of Quantitative Remote Sensing of Major Factors for Spatial-Temporal Heterogeneity on the Land Surface. Advances in Earth Science, 21(8): 771-780 (in Chinese with English abstract). http://www.adearth.ac.cn/EN/article/showSupportInfo.do?id=3584 [5] Liu, W., Liu, L., Chen, L., et al., 2009. Research on Mass Remote Sensing Image Data Storage Technology. Computer Engineering, 35(5): 236-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJC200905084.htm [6] Lü, X.F., Cheng, C.Q., Gong, J.Y., et al., 2011. Review of Data Storage and Management Technologies for Massive Remote Sensing Data. Science China Technological Sciences, 54(12): 3220-3232. doi: 10.1007/s11431-011-4549-z [7] Niu, D.X., Cui, M.M., Huang, C., et al., 2011. Study of the Image Data Storage Technology Based on Oracle Spatial. Journal of Anhui Agri Sci, 39(7): 4254-4255, 4261 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHNY201107186.htm [8] Tan, Q.Q., Bi, J.T., Chi, T.H., et al., 2008. A Flexible and Efficient Algorithm for Constructing Remote Sensing Image Pyramid. Computer Systems Applications, (4): 124-127(in Chinese with English abstract). http://www.researchgate.net/publication/293227961_A_flexible_and_efficient_algorithm_for_constructing_remote_sensing_image_pyramid [9] Wang, H.B., Tang, X.M., Li, Q.X., 2008. Research and Implementation of the Massive Remote Sensing Image Storage and Management Technology. Science of Surveying and Mapping, 33(6): 156-157 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHKD200806056.htm [10] Wang, X.D., 2012. Distributed File System Management Technology Research Based on The Massive Remote Sensing Image Data(Dissertation). Lanzhou Jiaotong University, Lanzhou, 19-30 (in Chinese with English abstract). [11] Yang, Y.C., Yun, J.M., 2007. Study and Implementation of Image Data Keeped on File Management System Based on GIS. Bulletin of Surveying and Mapping, (7): 30-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHTB200707011.htm [12] Zhou, J.L., Zhou, Z.D., 2012. Improved Data Distribution Strategy for Cloud Storage System. Journal of Computer Applications, 32(2): 309-312 (in Chinese with English abstract). http://www.researchgate.net/publication/291529505_Improved_data_distribution_strategy_for_cloud_storage_system [13] 范凯, 2010. NoSQL数据库综述. 程序员: (6): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ITSJ201006047.htm [14] 樊小泊, 陈红, 2006. 海量影像数据库管理系统关键技术研究. 计算机工程与应用, (30): 10-12, 37. doi: 10.3321/j.issn:1002-8331.2006.30.004 [15] 赖积保, 罗晓丽, 于涛, 等, 2013. 一种支持云计算的遥感影像数据组织模型研究. 计算机科学, 40(7): 80-83, 115. doi: 10.3969/j.issn.1002-137X.2013.07.018 [16] 李小文, 2006. 地球表面时空多变要素的定量遥感项目综述. 地球科学进展, 21(8): 771-780. doi: 10.3321/j.issn:1001-8166.2006.08.001 [17] 刘伟, 刘露, 陈荦, 等, 2009. 海量遥感影像数据存储技术研究. 计算机工程, 35(5): 236-239. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200905084.htm [18] 吕雪峰, 程承旗, 龚健雅, 等, 2011. 海量遥感数据存储管理技术综述. 中国科学: 技术科学, 41(12): 1561-1573. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201112002.htm [19] 牛得学, 崔苗苗, 黄超, 2011. 基于Oracle Spatial的影像数据存储技术研究. 安徽农业科学, 39(7) : 4254-4255, 4261. doi: 10.3969/j.issn.0517-6611.2011.07.182 [20] 谭庆全, 毕建涛, 池天河, 2008. 一种灵活高效的遥感影像金字塔构建算法. 计算机系统应用, (4): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY200804033.htm [21] 王华斌, 唐新明, 李黔湘, 2008. 海量遥感影像数据存储管理技术研究与实现. 测绘科学, 33(6): 156-157. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200806056.htm [22] 王旭东, 2012. 面向海量遥感影像数据的分布式文件系统管理技术研究(硕士学位论文). 兰州: 兰州交通大学, 19-30. [23] 杨永崇, 贠建明, 2007. 基于GIS的存档影像资料管理系统的研制. 测绘通报, (7): 30-34. doi: 10.3969/j.issn.0494-0911.2007.07.010 [24] 周敬利, 周正达, 2012. 改进的云存储系统数据分布策略. 计算机应用, 32(2): 309-312. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201202002.htm