Lithologic Classification from Remote Sensing Images Based on Spectral Index
-
摘要: 由于传统的岩性分类方法受岩石辐射干扰因素大, 存在"同物异谱"以及"同谱异物"现象, 岩性分类精度低, 所以在深入分析岩石矿物光谱特征基础上, 以西昆仑成矿带地区的二长花岗岩、石英正长岩以及正长岩为研究对象, 基于这3种岩性的实测光谱数据以及先进星载热发射和反射辐射仪(advanced spaceborne theemal emission and reflection radiometer, ASTER)影像数据的波段设置特征, 建立了RI和SI两种光谱指数.利用所建立的RI以及SI光谱指数对ASTER遥感数据进行岩性分类.结果显示, RI和SI两种光谱指数法在提取二长花岗岩时精度达到70%以上, 石英正长岩精度为80%左右, 与最大似然法得到的分类结果相比, 这两种岩性的分类精度明显提高了.
-
关键词:
- 光谱指数法 /
- 先进星载热发射和反射辐射仪 /
- 西昆仑成矿带 /
- 最大似然法 /
- 遥感
Abstract: In order to solve the problem of interference factors of the rock radiated in traditional lithologic classification with the phenomenon of the different spectra for the same substance and the same spectrum for different substances, and the low lithologic classification accuracy, A study based on the in-depth analysis of spectrum characteristics of mineral rock, taking monzonitic granite, quartz-syenite and syenite of West Kunlun metallogentic belt as the research object is presented in the paper. We set up two spectral index RI and SI on the basis of measured spectral data of three kinds of lithology and the characteristics of ASTER imaging data. Two spectral index methods are used to classify ASTER remote sensing data, and the results show that the accuracy in monzonitic granite extraction with RI and SI spectral index method is above 70%, about 80% in quartz-syenite extraction. The precision of the two kinds of lithology has been significantly increased compared with the classification results of maximum likelihood method. -
表 1 比值指数RI范围
Table 1. Range of index RI
岩石类型 比值指数RI值范围 二长花岗岩 0.060~0.100 石英正长岩 0.035~0.050 正长岩 0.010~0.030 表 2 和指数SI范围
Table 2. Range of index SI
岩石类型 和指数SI值范围 二长花岗岩 350~930 石英正长岩 150~300 正长岩 1.0~149.0 表 3 不同分类结果精度
Table 3. Accuracy of the different classification results
岩性 RI指数(%) SI指数(%) 最大似然法(%) 二长花岗岩 75.27 71.00 15.57 正长岩 29.39 49.21 58.24 石英正长岩 82.69 79.75 60.20 总体精度 46.27 54.37 45.18 Kappa系数 0.368 1 0.395 7 0.097 1 -
[1] Gao, H., Zhang, J.L., Ou, Y.Y., et al., 2013. Lithological Classification Based on ASTER Data by Minimum Noise Fraction Transform. Journal of Guilin University of Technology, 33(2): 259-265(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX201302010.htm [2] Li, P.J., 2004. Lithological Discrimination Using ASTER Image and Geostatistical Texture. J. Mineral. Petrol., 24(3): 116-120(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200403014.htm [3] Liu, C.Q., Ma, Z.L., Mo, Y.F., 2007. Progress and Prospect of Study on Remote Sensing Lithologic Identification. Journal of Guangxi Academy of Sciences, 23(2): 120-124, 128(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXKX200702016.htm [4] Luo, J.C., Zhou, C.H., 2001. Physiological Cognition Model and Methodological System for Remote Sensing Image. Remote Sensing Technology and Application, 16(2): 103-109(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS200102006.htm [5] Rowan, L.C., Mars, J.C., 2003. Lithologic Mapping in the Mountain Pass. Remote Sensing of Environment, 84(3): 350-366. doi: 10.1016/S0034-4257(02)00127-X [6] Wang, C.Z., Guo, H.D., 2000. Lithological Classification of Polarimetric SAR Data with Target Decomposition Method. Journal of Remote Sensing, 4(3): 219-224(in Chinese with English abstract). http://www.researchgate.net/publication/284976597_Lithological_classification_of_Polarimetric_SAR_data_with_target_decomposition_method [7] Yu, J., Zhang, Z., Li, M.J., et al., 2012. The Methodology of Lithologic Information Extraction by Using ASTER Data in West Kunlun Mountains. Remote Sensing for Land & Resources, (1): 22-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GTYG201201004.htm [8] Zhao, J.H., Yang, S.F., Chen, H.L., 2004. Recognition of Lithology with Remote Sensing Image Based on Fractal Texture. Remote Sensing Information, (2): 2-4(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGXX200402000.htm [9] 高慧, 张建龙, 欧阳渊, 等, 2013. 基于最小噪声分量变换的ASTER遥感数据岩性分类. 桂林理工大学学报, 33(2): 259-265. doi: 10.3969/j.issn.1674-9057.2013.02.010 [10] 李培军, 2004. 用ASTER图像和地统计学纹理进行岩性分类. 矿物岩石, 24(3): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200403014.htm [11] 刘超群, 马祖陆, 莫源富, 2007. 遥感岩性识别研究进展与展望. 广西科学院学报, 23(2): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKX200702016.htm [12] 骆剑承, 周成虎, 2001. 遥感影像生理认知概念模型和方法体系. 遥感技术与应用, 16(2): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS200102006.htm [13] 王翠珍, 郭华东, 2000. 极化雷达目标分解方法用于岩性分类. 遥感学报, 4(3): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200003010.htm [14] 余健, 张志, 李闵佳, 等, 2012. 基于ASTER遥感影像的西昆仑岩性信息提取方法研究. 国土资源遥感, (1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201201004.htm [15] 赵建华, 杨树锋, 陈汉林, 2004. 基于分形纹理的遥感图像岩性识别方法. 遥感信息, (2): 2-4. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200402000.htm