Silicification Information Extraction Based on the Content of SiO2 from ASTER TIR Data
-
摘要: 硅化蚀变是岩石矿物蚀变中一种重要的矿化蚀变类型, 与很多金矿的形成有着密切的关系, 且硅化信息常作为野外重要的找矿标志.通过分析硅化蚀变矿物在先进星载热发射和反射辐射仪(advanced spaceborne thermal emission and reflection radiometer, ASTER)热红外波段的光谱特征, 依据硅化作用与SiO2含量间的关系, 选取了SiO2含量作为提取硅化信息的辅助因子, 提出了ASTER热红外遥感硅化信息提取方法.以内蒙古二连浩特市北部地区为例, 完成了该地区硅化信息提取工作.通过野外实地勘察验证, 发现在39个野外实地硅化蚀变采样点中33个采样点在蚀变图像中得到验证, 精度达到86.14%.
-
关键词:
- 热红外 /
- 先进星载热发射和反射辐射仪 /
- 遥感 /
- SiO2 /
- 硅化
Abstract: Silicic alteration, an important alteration type among mineral rock alteration, has close relationship with the formation of several gold mines and it has often been treated as symbol for geological prospecting in the field. This paper proposes a method for the silicification information extraction through analyzing the ASTER (advanced spaceborne thermal emission and reflection radiometer) TIR spectral characteristics of silicification alteration minerals and selecting the content of SiO2 as an accessory factor based on the relationship between silicification and the content of SiO2. The method was applied in northern erlianhot city of Inner Mongolia and the silicification information of study area was extracted. By the field survey, 33 of the 39 silicification sampling sites have been verified, with an accuracy of 86.14%.-
Key words:
- thermal infrared /
- ASTER /
- remote sensing /
- SiO2 /
- silicification
-
图 3 研究区地质图
1.湖积层:现代湖积淤泥沉积;2.冲洪积层: 由砂岩及砾石层组成;3.冲洪积层: 由粗砂和砾石层组成;4.阿巴嘎组: 灰紫色、紫褐色气孔状玄武岩及伊丁玄武岩、安山玄武岩;5.宝格达乌拉组:砖红色泥岩夹含砾粗砂岩;6.伊尔丁曼哈组:红色粘土和黄色砂砾岩;7.大磨拐河组:页岩、泥岩、砂岩、砂砾岩及砾岩组成夹褐煤;8.白音高老组:流纹质岩屑晶屑凝灰岩、流纹岩及流纹质溶结凝灰岩等酸性火山岩;9.玛尼吐组:安山岩、粗安岩、石英粗安岩、安山玢岩安山质角砾凝灰岩、英安玢岩及灰黑色及灰紫色玄武岩;10.宝力高庙组二段:灰-灰褐色安山岩、溶解凝灰岩,黄褐色灰绿色流纹质含角砾晶屑凝灰岩、凝灰质砂岩英安岩等中酸性火山岩及火山碎屑岩,含植物化石;11.宝力高庙组二段:(变质)长石砂岩、板岩、砾岩、硬砂岩为主夹中酸性岩屑晶屑凝灰岩、安山玢岩及灰岩透镜体;12.泥鳅河组:为浅海相碎屑岩夹灰岩组合,岩性为灰色、灰绿色、褐灰色(变质)粉砂质泥、砂岩夹灰岩;13.乌宾敖包组:灰褐色、灰绿色板岩、绢云母板岩、分砂质板岩、长石砂岩、变泥岩夹安山玢岩及灰岩透镜体;14.肉红色中细粒正长花岗岩;15.肉红色中细粒云母二长花岗岩;16.肉红色斑状中细粒黑云母二长花岗岩;17.肉红色中细粒-细中粒碱长花岗岩;18.灰绿色角闪花岗闪长岩;19.灰绿-暗灰绿色中细粒闪长岩、石英闪长岩;20.灰、灰白、灰黄色中细粒正长花岗岩、碱长花岗岩局部有闪石碱性花岗岩;21.灰白-灰色斑状中细粒黑云母正长花岗岩;22.肉红色中细粒-细粒二长花岗岩;23.灰白-灰色中细粒黑云母二长花岗岩;24.灰白-灰色斑状中细粒黑云母二长花岗岩及少量花岗闪长岩;25.灰白-灰色花岗闪长岩及少量石英闪长岩、石英二长岩;26.晚侏罗世次粗面斑岩;27.石英脉;28.花岗岩脉;29.碱性花岗斑岩脉;30.闪长岩脉;31.地质界线;32.实测地层不整合界线、火山喷发不整合地质界线;33.实测正断层;34.实测逆断层;35.实测平移断层;36.实测性质不明断层;37.角岩化;38.构造破碎带
Fig. 3. Geological sketch of the research area
-
[1] Chen, J., Wang, A.J., 2007. The Pilot Study on Petrochemistry Components Mapping with ASTER Thermal Infrared Remote Sensing Data. Journal of Remote Sensing, 11(4): 1-3 (in Chinese with English abstract). http://www.researchgate.net/publication/284923747_The_pilot_study_on_petrochemistry_components_mapping_with_ASTER_thermal_infrared_remote_sensing_data [2] Lyon, R.J.P., 1965. Analysis of Rocks by Spectral Infrared Emission (8 to 25 Microns). Economic Geology, 60(4): 715-736. doi: 10.2113/gsecongeo.60.4.715 [3] Ninomiya, Y., 2002. Mapping Quartz, Carbonate Minerals, and Mafic-Ultramafic Rocks Using Remotely Sensed Multispectral Thermal Infrared ASTER Data. Proc. SPIE 4710, Thermosense XXIV, 191. doi: 10.1117/12.459566 [4] Rowan, L.C., Mars, J.C., 2003. Lithologic Mapping in the Mountain Pass, California Area Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data. Remote Sensing of Environment, 84(3): 350-366. doi: 10.1016/S0034-4257(02)00127-X [5] Xiao, J., Han, L.F., Tang, D.L., 1989. The Genesis of Silicified Zones in Southern Hunan and Their Ore-Prospecting Significance. Journal of Ore Deposit Geology, 8(4): 9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ198904009.htm [6] Xu, Z., Zhao, H.J., Li, N., 2006. Study of Inversing Land Surface Emissivity from ASTER Data. Infrared and Laser Engineering, 35(Suppl. ): 517-522(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HWYJ2006S4097.htm [7] Yang, B., Wu, D.W., Lai, J.Q., 2005. The Set Up of Quantization Remote Sensing Models for Mineralization and a Literation—Take Silicification in Yingzuishan Gold Mine as an Example. Journal of Remote Sensing, 9(6): 717-724(in Chinese with English abstract). http://www.oalib.com/paper/1470905 [8] Yang, C.B., Zhu, Q., 2009. Quantitative Inversion of SiO2 Content in the Surface Rock from ASTER Thermal Infrared Data. Geology and Exploration, 6(11): 692-694(in Chinese with English abstract). [9] Yu, Z.J., Xu, S.M., Wang, J.D., et al., 2010. A New Type of Reservoir of Paleozoic Buried Hill in Zhuanghai Area: Discovery and Characteristics of Silicified Rock. Earth Science—China University of Geosciences, 35(1): 87-96 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.009 [10] 陈江, 王安建, 2007. 利用ASTER热红外遥感数据开展岩石化学成分填图的初步研究. 遥感学报, 11(4): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200704024.htm [11] 肖晋, 韩兰生, 汤大立, 1989. 论湘南地区"硅化带"的成因及其找矿意义. 矿床地质, 8(4): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198904009.htm [12] 徐州, 赵慧洁, 李娜, 2006. 基于ASTER数据的地物光谱比辐射率的反演研究. 红外与激光工程, 35(增刊): 517-522. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S4097.htm [13] 杨波, 吴德文, 赖健清, 等, 2005. 矿化信息提取定量遥感模型的建立——以鹰嘴山硅化蚀变为例. 遥感学报, 9(6): 717-724. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200506012.htm [14] 杨长保, 朱群, 2009. ASTER热红外遥感地表岩石的二氧化硅含量定量反演. 地质与勘探, 6(11): 692-694. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200906010.htm [15] 于正军, 许淑梅, 王金铎, 等, 2010. 桩海地区下古生界潜山内新一类储层: 硅化岩储层的发现及特征. 地球科学——中国地质大学学报, 35(1): 87-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001012.htm