Extraction of Alteration Anomaly Information by Feature-Based Principal Component Analysis from ASTER Data
-
摘要: 为利用多光谱遥感数据提取蚀变异常信息, 在分析蚀变矿物的先进星载热发射和反射辐射仪(advanced spaceborne thermal emission and reflection radiometer, ASTER)和影像短波近红外(visible and near IR-short wave-length IR, VNIR-SWIR)谱带的特征光谱曲线的基础上, 对传统的主成分分析法进行了改进, 利用特征导向主成分分析法对辽宁兴城地区进行矿物蚀变信息提取, 成功的对该地区内的褐铁矿(Fe3+)、绿泥石(Mg-OH基团矿物)和高岭石(Al-OH基团矿物)进行了蚀变异常信息提取.通过实践验证和研究区地质资料表明, 特征导向主成分分析法能够有效地提取蚀变信息并识别研究区内主要矿物, 可以为该区的成矿预测工作提供一定的依据.
-
关键词:
- 先进星载热发射和反射辐射仪 /
- Crosta分析 /
- 蚀变异常 /
- 遥感 /
- 兴城地区
Abstract: In order to extract the alteration anomaly information with multi-spectral remote sensing data, this paper improves the traditional principal component analysis is improved and the mineral alteration information of Xingcheng region of Liaoning using the method of the feature oriented principal component analysis is extracted, successfully for the alteration anomaly of the limonite (Fe3+), chlorite (Mg-OH group minerals) and kaolinite (Al-OH group minerals) based on the analysis of the characteristic curve of canopy spectral in VNIR-SWIR (visible and near IR-short wave-length IR) band of ASTER (advanced spaceborne thermal emission and reflection radiometer) data about alteration mineral.Field practice and geological data of research area indicate that the method above can effectively extract the alteration information and identify the mainly mineral of research area, which can provide a certain basis for the metallogenic prediction.-
Key words:
- ASTER /
- Crosta analysis /
- alteration anomaly /
- remote sensing /
- Xingcheng area
-
表 1 Mg-OH基团信息提取的主成分特征向量矩阵
Table 1. Eigenvalue matrix of the PCA for extraction of Mg-OH group information
主成分 ASTER2 ASTER5 ASTER8 ASTER9 PC1 -0.132 692 0.050 713 0.030 612 0.024 256 PC2 -0.796 479 0.159 458 0.035 955 0.038 493 PC3 0.093 727 0.790 366 -0.329 421 -0.506 628 PC4 0.021 811 0.652 560 -0.750 309 0.103 284 表 2 Al-OH基团信息提取的主成分特征向量矩阵
Table 2. Eigenvalue matrix of the PCA for extraction of Al-OH group information
主成分 ASTER1 ASTER4 ASTER6 ASTER7 PC1 -0.504 827 -0.490 005 -0.507 766 -0.497 210 PC2 -0.855 414 0.393 318 0.253 753 0.221 760 PC3 0.115 823 0.767 756 -0.330 855 -0.536 349 PC4 0.001 260 0.125 483 -0.753 869 0.644 929 表 3 Fe3+信息提取的主成分特征向量矩阵
Table 3. Eigenvalue matrix of the PCA for extraction of Fe3+ group information
主成分 ASTER1 ASTER2 ASTER3 ASTER4 PC1 -0.525 319 -0.592 313 -0.407 143 -0.455 456 PC2 -0.575 272 -0.194 051 0.758 061 0.238 225 PC3 -0.194 113 -0.167 755 -0.457 760 0.851 254 PC4 -0.596 173 0.763 785 -0.223 683 -0.105 713 -
[1] Chen, J.P., Wang, Q., Dong, Q.J., et al., 2009. Extraction of Remote Sensing Alteration Information in Tuotuohe, Qinghai Province. Earth Science—Journal of China University of Geosciences, 34 (2): 314-318 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.033 [2] Crosta, A.P., Moore, J.M., 1989. Enhancement of Landsat Thematic Mapper Imagery for Residual Soil Mapping in SW Minais Gerais State, Brazil: A Prospecting Case History in Greenstone Belt Terrain. Proceedings of the 9th Thematic Conference: Remote Sensing for Exploration Geology, Calgary, 1173-1187. [3] Loughlin, W.P., 1991 Principal Component Analysis for Alteration Mapping. Photogrammetric Engineering and Remote Sensing, 57(6): 1163-1169. http://www.researchgate.net/publication/279543445_Principal_component_analysis_for_alteration_mapping [4] Ma, J, W., 1997. Methodology Study of Quickly Identifying Mineral Bearing Alterations from TM Data. Journal of Remote Sensing, 1(3): 208-213, 244(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGXB199703007.htm [5] Rokos, D., Argialas, D., Mavrantza, R., et al., 2000. Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hella. Natural Resources Research, 12(4): 277-293. http://www.ingentaconnect.com/content/klu/narr/2000/00000009/00000004/00300036 [6] Tangestani, M.H., Moore, F., 2001. Comparison of Three Principal Component Analysis Techniques to Porphyry Copper Alteration Mapping: A Case Study, Meiduk Area, Kerman, Iran. Canadian Journal of Remote Sensing, 27(2): 176-182. doi: 10.1080/07038992.2001.10854931 [7] Yang, J.M., Zhang, Y, J., Chen, W., et al., 2003. Application of ETM+ (TM) Remote Sensing Alteration Anomaly Extraction Technique to Gobi Area, East Tianshan Mountains. Mineral Deposits, 22(3): 278-286 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/kcdz200303009 [8] Yang, M., 2010. The Lithostratigraphic Characters of the Mesoproterozoic Dahongyu Formation in Xingcheng Area, Liaoning Province (Dissertation). Jilin University, Changchun, 12-13(in Chinese with English abstract). [9] Zhao, Y.H., Zhang, F.X., Chen, N.F., 1991. The Application of Principal Component Integraion of Band Ratios to Extracting Hydrothermal Alteration Information. Remote Sensing for Land & Resources, 3(3): 12-17(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTYG199103002.htm [10] 陈建平, 王倩, 董庆吉, 等, 2009. 青海沱沱河地区遥感蚀变信息提取. 地球科学——中国地质大学学报, 34(2): 314-318. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902014.htm [11] 马建文, 1997. 利用TM数据快速提取含矿蚀变带方法研究. 遥感学报, 1(3): 208-213, 244. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB199703007.htm [12] 杨建民, 张玉君, 陈薇, 等, 2003. ETM+(TM) 蚀变遥感异常技术方法在东天山戈壁地区的应用. 矿床地质, 22(3) : 278-286. doi: 10.3969/j.issn.0258-7106.2003.03.009 [13] 杨明, 2010. 辽宁省兴城地区中元古代大红峪组岩石地层特征(硕士学位论文). 长春: 吉林大学. [14] 赵元洪, 张福祥, 陈南峰, 1991. 波段比值的主成份复合在热液蚀变信息提取中的应用. 国土资源遥感, 3(3): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG199103002.htm