• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    植被覆盖区羟基和碳酸盐矿物光谱吸收深度校正模型

    周超 汪大明 陈圣波 刘彦丽 王明常

    周超, 汪大明, 陈圣波, 刘彦丽, 王明常, 2015. 植被覆盖区羟基和碳酸盐矿物光谱吸收深度校正模型. 地球科学, 40(8): 1365-1370. doi: 10.3799/dqkx.2015.119
    引用本文: 周超, 汪大明, 陈圣波, 刘彦丽, 王明常, 2015. 植被覆盖区羟基和碳酸盐矿物光谱吸收深度校正模型. 地球科学, 40(8): 1365-1370. doi: 10.3799/dqkx.2015.119
    Zhou Chao, Wang Daming, Chen Shengbo, Liu Yanli, Wang Mingchang, 2015. Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image. Earth Science, 40(8): 1365-1370. doi: 10.3799/dqkx.2015.119
    Citation: Zhou Chao, Wang Daming, Chen Shengbo, Liu Yanli, Wang Mingchang, 2015. Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image. Earth Science, 40(8): 1365-1370. doi: 10.3799/dqkx.2015.119

    植被覆盖区羟基和碳酸盐矿物光谱吸收深度校正模型

    doi: 10.3799/dqkx.2015.119
    基金项目: 

    国家地质矿产调查评价项目 1212011087112

    国家自然科学基金项目 41402293

    国家高技术研究发展计划(863计划)项目 2012AA12A308

    吉林大学研究生创新基金资助项目 2014029

    数字制图与国土信息应用工程国家测绘地理信息局重点实验室开放研究基金项目 GCWD201402

    详细信息
      作者简介:

      周超(1988-), 男, 博士研究生, 主要从事高光谱地质遥感研究.E-mail: zhouc0316@126.com

    • 中图分类号: P627

    Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image

    • 摘要: 为增强植被覆盖区羟基和碳酸盐矿物的吸收特征, 提高矿物信息提取精度.通过模拟单像元内新鲜植物、干枯植物、羟基和碳酸盐矿物的混合光谱, 发现在一定波段范围内4种端元的特征波段处吸收深度呈显著线性关系, 并建立了羟基和碳酸盐矿物的植物校正吸收深度(vegetation corrected continuum depths, VCCD)模型.将模型应用于黑龙江呼玛的Hyperion影像, 提取了高岭石和方解石矿物信息.在去除河床、道路等干扰信息后, 经野外实地验证和室内岩石鉴定, 矿物信息提取结果较好.

       

    • 图  1  混合光谱模拟所使用的光谱端元

      Fig.  1.  The spectra selected for the synthetic analysis portion of the study

      图  2  绿色和干枯植物对2.200 μm/2.335 μm处吸收深度的响应

      图中0.670 μm、2.135 μm、2.200 μm和2.335 μm分别代表绿色植物、干枯植物、高岭土和方解石的特征吸收波长

      Fig.  2.  Response of 2.200 μm/2.335 μm continuum removed band depth to green and dry vegetation

      图  3  黑龙江呼玛Hyperion影像矿化蚀变信息(绿色部分)

      a.方解石;b.高岭石

      Fig.  3.  Mineralized Alteration-Information from Hyperion data in Huma, Heilongjiang

      图  4  方解石提取结果野外验证

      Fig.  4.  The field verification of calcite extraction result

      表  1  4种端元的连续统去除范围和中心波长

      Table  1.   The center wavelength and left and right wavelength extent of the four spectral used for continuum remove

      端元 中心波长(μm) 左肩(μm) 右肩(μm)
      绿色植物 0.670 0 0.551 0 0.751 0
      干枯植物 2.135 0 2.035 0 2.195 0
      羟基矿物 2.205 0 2.135 0 2.245 0
      碳酸岩矿物 2.335 0 2.215 0 2.400 0
      下载: 导出CSV

      表  2  VCCD模型的检验系数和拟合系数

      Table  2.   The calculated calibration statistics for the VCCD model

      系数 高岭土 方解石
      R2 0.914 2 0.978 1
      P 0.001 0 0.001 0
      A1 0.408 5 0.314 8
      A2 -0.317 4 0.048 7
      A3 0.936 5 -0.855 9
      下载: 导出CSV
    • [1] Chen, S.B., Liu, Y.L., Yang, Q., et al., 2013. Lithological Classification from Hyperspectral Data in Dense Vegetation Cover Area. Journal of Jilin University(Earth Science Edition), 42(6): 1959-1965 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201206044.htm
      [2] Clark, R.N., King, T.V.V., Klejwa, M., et al., 1990. High Spectral Resolution Reflectance Spectroscopy of Minerals. Journal of Geophysical Research, 95(B8): 12653. doi: 10.1029/jb095ib08p12653
      [3] Crowley, J.K., Brickey, D.W., Rowan, L.C., 1989. Airborne Imaging Spectrometer Data of the Ruby Mountains, Montana: Mineral Discrimination Using Relative Absorption Band-Depth Images. Remote Sensing of Environment, 29(2): 121-134. doi: 10.1016/0034-4257(89)90021-7
      [4] Galvão, L.S., Almeida-Filho, R., Vitorello, Í., 2005. Spectral Discrimination of Hydrothermally Altered Materials Using ASTER Short-Wave Infrared Bands: Evaluation in a Tropical Savannah Environment. International Journal of Applied Earth Observation and Geoinformation, 7(2): 107-114. doi: 10.1016/j.jag.2004.12.003
      [5] Gan, F.P., Wang, R.S., Ma, A.N., 2003. Spectral Identification Tree (Sit) for Mineral Extraction Based on Spectral Characteristics of Minerals. Earth Science Frontiers, 10(2): 445-454 (in Chinese with English abstract).
      [6] Gong, P., Pu, R.L., 2000. Hyperspectral Remote Sensing and Its Applications. Higher Education Press, Beijing (in Chinese).
      [7] Hewson, R.D., Cudahy, T.J., Drake-Brockman, J., et al., 2006. Mapping Geology Associated with Manganese Mineralisation Using Spectral Sensing Techniques at Woodie Woodie, East Pilbara. Exploration Geophysics, 37(4): 389. doi: 10.1071/eg06389
      [8] Hunt, G.R., 1982. Spectroscopic Properties of Rocks and Minerals. Volume Ⅰ, Handbook of Physical Properties of Rocks, CRC Press, Boca Raton.
      [9] Karnieli, A., Kaufman, Y.J., Remer, L., et al., 2001. AFRI-Aerosol Free Vegetation Index. Remote Sensing of Environment, 77(1): 10-21. doi: 10.1016/s0034-4257(01)00190-0
      [10] Kokaly, R.F., Clark, R.N., 1999. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. Remote Sensing of Environment, 67(3): 267-287. doi: 10.1016/s0034-4257(98)00084-4
      [11] Luo, W.F., Zhong, L., Zhang, B., et al., 2010. Independent Component Analysis for Spectral Unmixing in Hyperspectral Remote Sensing Image. Spectroscopy and Spectral Analysis, 30(6): 1628-1633 (in Chinese with English abstract). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4566756
      [12] Lü, F.J., Hao, Y.S., Wang, J., et al., 2011. Extraction of Alteration Mineral Information Based on Hyperspectral Data in Vegetation Covering Field. Journal of Jilin University (Earth Science Edition), 41(1): 316-321 (in Chinese with English abstract). http://www.researchgate.net/publication/286865901_Extraction_of_alteration_mineral_information_based_on_hyperspectral_data_in_vegetation_covering_field
      [13] Murphy, R.J., 1995. The Effects of Surficial Vegetation Cover on Mineral Absorption Feature Parameters. International Journal of Remote Sensing, 16(12): 2153-2164. doi: 10.1080/01431169508954548
      [14] Mutanga, O., Skidmore, A.K., 2007. Red Edge Shift and Biochemical Content in Grass Canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 62(1): 34-42. doi: 10.1016/j.isprsjprs.2007.02.001
      [15] Nagler, P.L., Daughtry, C.S.T., Goward, S.N., 2000. Plant Litter and Soil Reflectance. Remote Sensing of Environment, 71(2): 207-215. doi: 10.1016/s0034-4257(99)00082-6
      [16] Nanni, M.R., Demattê, J.A.M., 2006. Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis. Soil Science Society of America Journal, 70(2): 393. doi: 10.2136/sssaj2003.0285
      [17] Rodger, A., Cudahy, T., 2009. Vegetation Corrected Continuum Depths at 2.200 μm: An Approach for Hyperspectral Sensors. Remote Sensing of Environment, 113(10): 2243-2257. doi: 10.1016/j.rse.2009.06.011
      [18] van der Meer, F.V.D., 2004. Analysis of Spectral Absorption Features in Hyperspectral Imagery. International Journal of Applied Earth Observation and Geoinformation, 5(1): 55-68. doi: 10.1016/j.jag.2003.09.001
      [19] 陈圣波, 刘彦丽, 杨倩, 等, 2013. 植被覆盖区卫星高光谱遥感岩性分类. 吉林大学学报(地球科学版), 42(6): 1959-1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206044.htm
      [20] 甘甫平, 王润生, 马蔼乃, 2003. 基于特征谱带的高光谱遥感矿物谱系识别. 地学前缘, 10(2): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302033.htm
      [21] 宫鹏, 浦瑞良, 2000. 高光谱遥感及其应用. 北京: 高等教育出版社.
      [22] 罗文斐, 钟亮, 张兵, 等, 2010. 高光谱遥感图像光谱解混的独立成分分析技术. 光谱学与光谱分析, 30(6): 1628-1633. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201006042.htm
      [23] 吕凤军, 郝跃生, 王娟, 等, 2011. 植被覆盖区高光谱蚀变矿物信息提取. 吉林大学学报(地球科学版), 41(1): 316-321. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201101045.htm
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  2830
    • HTML全文浏览量:  150
    • PDF下载量:  293
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-04-11
    • 刊出日期:  2015-08-01

    目录

      /

      返回文章
      返回