Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image
-
摘要: 为增强植被覆盖区羟基和碳酸盐矿物的吸收特征, 提高矿物信息提取精度.通过模拟单像元内新鲜植物、干枯植物、羟基和碳酸盐矿物的混合光谱, 发现在一定波段范围内4种端元的特征波段处吸收深度呈显著线性关系, 并建立了羟基和碳酸盐矿物的植物校正吸收深度(vegetation corrected continuum depths, VCCD)模型.将模型应用于黑龙江呼玛的Hyperion影像, 提取了高岭石和方解石矿物信息.在去除河床、道路等干扰信息后, 经野外实地验证和室内岩石鉴定, 矿物信息提取结果较好.Abstract: The objective of this study is to enhance the absorption feature of hydroxyl and carbonate minerals, and to improve the precision of the minerals information extraction in the vegetation covered area. The linear mixing spectra of a pixel containing a hydroxyl/carbonate mineral, green and dry vegetation has been simulated. When a fixed wavelength range is considered, continuum removed absorption depths for diagnostic absorption features of three end-members show significantly linear relation. The vegetation corrected continuum depths (VCCD) model was established to detect hydroxyl or carbonate mineral, which was tested with hyperspectral data (Hyperion) collected at Huma in Xiaoxing'anling, China. Comparing the extracting mineral results and field samples of rock, it is found that the extracting minerals information correspond with that of the polished section of mineral, but the disturbance information is found in the river bed or along the road.
-
Key words:
- hyperspectral /
- continuum removal /
- remote sensing /
- hydroxyl/carbonate mineral content /
- vegetation /
- Hyperion
-
表 1 4种端元的连续统去除范围和中心波长
Table 1. The center wavelength and left and right wavelength extent of the four spectral used for continuum remove
端元 中心波长(μm) 左肩(μm) 右肩(μm) 绿色植物 0.670 0 0.551 0 0.751 0 干枯植物 2.135 0 2.035 0 2.195 0 羟基矿物 2.205 0 2.135 0 2.245 0 碳酸岩矿物 2.335 0 2.215 0 2.400 0 表 2 VCCD模型的检验系数和拟合系数
Table 2. The calculated calibration statistics for the VCCD model
系数 高岭土 方解石 R2 0.914 2 0.978 1 P 0.001 0 0.001 0 A1 0.408 5 0.314 8 A2 -0.317 4 0.048 7 A3 0.936 5 -0.855 9 -
[1] Chen, S.B., Liu, Y.L., Yang, Q., et al., 2013. Lithological Classification from Hyperspectral Data in Dense Vegetation Cover Area. Journal of Jilin University(Earth Science Edition), 42(6): 1959-1965 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201206044.htm [2] Clark, R.N., King, T.V.V., Klejwa, M., et al., 1990. High Spectral Resolution Reflectance Spectroscopy of Minerals. Journal of Geophysical Research, 95(B8): 12653. doi: 10.1029/jb095ib08p12653 [3] Crowley, J.K., Brickey, D.W., Rowan, L.C., 1989. Airborne Imaging Spectrometer Data of the Ruby Mountains, Montana: Mineral Discrimination Using Relative Absorption Band-Depth Images. Remote Sensing of Environment, 29(2): 121-134. doi: 10.1016/0034-4257(89)90021-7 [4] Galvão, L.S., Almeida-Filho, R., Vitorello, Í., 2005. Spectral Discrimination of Hydrothermally Altered Materials Using ASTER Short-Wave Infrared Bands: Evaluation in a Tropical Savannah Environment. International Journal of Applied Earth Observation and Geoinformation, 7(2): 107-114. doi: 10.1016/j.jag.2004.12.003 [5] Gan, F.P., Wang, R.S., Ma, A.N., 2003. Spectral Identification Tree (Sit) for Mineral Extraction Based on Spectral Characteristics of Minerals. Earth Science Frontiers, 10(2): 445-454 (in Chinese with English abstract). [6] Gong, P., Pu, R.L., 2000. Hyperspectral Remote Sensing and Its Applications. Higher Education Press, Beijing (in Chinese). [7] Hewson, R.D., Cudahy, T.J., Drake-Brockman, J., et al., 2006. Mapping Geology Associated with Manganese Mineralisation Using Spectral Sensing Techniques at Woodie Woodie, East Pilbara. Exploration Geophysics, 37(4): 389. doi: 10.1071/eg06389 [8] Hunt, G.R., 1982. Spectroscopic Properties of Rocks and Minerals. Volume Ⅰ, Handbook of Physical Properties of Rocks, CRC Press, Boca Raton. [9] Karnieli, A., Kaufman, Y.J., Remer, L., et al., 2001. AFRI-Aerosol Free Vegetation Index. Remote Sensing of Environment, 77(1): 10-21. doi: 10.1016/s0034-4257(01)00190-0 [10] Kokaly, R.F., Clark, R.N., 1999. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. Remote Sensing of Environment, 67(3): 267-287. doi: 10.1016/s0034-4257(98)00084-4 [11] Luo, W.F., Zhong, L., Zhang, B., et al., 2010. Independent Component Analysis for Spectral Unmixing in Hyperspectral Remote Sensing Image. Spectroscopy and Spectral Analysis, 30(6): 1628-1633 (in Chinese with English abstract). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4566756 [12] Lü, F.J., Hao, Y.S., Wang, J., et al., 2011. Extraction of Alteration Mineral Information Based on Hyperspectral Data in Vegetation Covering Field. Journal of Jilin University (Earth Science Edition), 41(1): 316-321 (in Chinese with English abstract). http://www.researchgate.net/publication/286865901_Extraction_of_alteration_mineral_information_based_on_hyperspectral_data_in_vegetation_covering_field [13] Murphy, R.J., 1995. The Effects of Surficial Vegetation Cover on Mineral Absorption Feature Parameters. International Journal of Remote Sensing, 16(12): 2153-2164. doi: 10.1080/01431169508954548 [14] Mutanga, O., Skidmore, A.K., 2007. Red Edge Shift and Biochemical Content in Grass Canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 62(1): 34-42. doi: 10.1016/j.isprsjprs.2007.02.001 [15] Nagler, P.L., Daughtry, C.S.T., Goward, S.N., 2000. Plant Litter and Soil Reflectance. Remote Sensing of Environment, 71(2): 207-215. doi: 10.1016/s0034-4257(99)00082-6 [16] Nanni, M.R., Demattê, J.A.M., 2006. Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis. Soil Science Society of America Journal, 70(2): 393. doi: 10.2136/sssaj2003.0285 [17] Rodger, A., Cudahy, T., 2009. Vegetation Corrected Continuum Depths at 2.200 μm: An Approach for Hyperspectral Sensors. Remote Sensing of Environment, 113(10): 2243-2257. doi: 10.1016/j.rse.2009.06.011 [18] van der Meer, F.V.D., 2004. Analysis of Spectral Absorption Features in Hyperspectral Imagery. International Journal of Applied Earth Observation and Geoinformation, 5(1): 55-68. doi: 10.1016/j.jag.2003.09.001 [19] 陈圣波, 刘彦丽, 杨倩, 等, 2013. 植被覆盖区卫星高光谱遥感岩性分类. 吉林大学学报(地球科学版), 42(6): 1959-1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206044.htm [20] 甘甫平, 王润生, 马蔼乃, 2003. 基于特征谱带的高光谱遥感矿物谱系识别. 地学前缘, 10(2): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302033.htm [21] 宫鹏, 浦瑞良, 2000. 高光谱遥感及其应用. 北京: 高等教育出版社. [22] 罗文斐, 钟亮, 张兵, 等, 2010. 高光谱遥感图像光谱解混的独立成分分析技术. 光谱学与光谱分析, 30(6): 1628-1633. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201006042.htm [23] 吕凤军, 郝跃生, 王娟, 等, 2011. 植被覆盖区高光谱蚀变矿物信息提取. 吉林大学学报(地球科学版), 41(1): 316-321. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201101045.htm