• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于粒子群优化支持向量机的矿区土壤有机质含量高光谱反演

    谭琨 张倩倩 曹茜 杜培军

    谭琨, 张倩倩, 曹茜, 杜培军, 2015. 基于粒子群优化支持向量机的矿区土壤有机质含量高光谱反演. 地球科学, 40(8): 1339-1345. doi: 10.3799/dqkx.2015.115
    引用本文: 谭琨, 张倩倩, 曹茜, 杜培军, 2015. 基于粒子群优化支持向量机的矿区土壤有机质含量高光谱反演. 地球科学, 40(8): 1339-1345. doi: 10.3799/dqkx.2015.115
    Tan Kun, Zhang Qianqian, Cao Qian, Du Peijun, 2015. Hyperspectral Retrieval Model of Soil Organic Matter Content Based on Particle Swarm Optimization-Support Vector Machines. Earth Science, 40(8): 1339-1345. doi: 10.3799/dqkx.2015.115
    Citation: Tan Kun, Zhang Qianqian, Cao Qian, Du Peijun, 2015. Hyperspectral Retrieval Model of Soil Organic Matter Content Based on Particle Swarm Optimization-Support Vector Machines. Earth Science, 40(8): 1339-1345. doi: 10.3799/dqkx.2015.115

    基于粒子群优化支持向量机的矿区土壤有机质含量高光谱反演

    doi: 10.3799/dqkx.2015.115
    基金项目: 

    国家自然科学基金项目 41471356

    国家自然科学基金项目 41402293

    卫星测绘技术与应用测绘地理信息局重点实验室项目 KLAMTA-201410

    国家高技术研究发展计划(863计划)项目 2008AA121100

    国家高技术研究发展计划(863计划)项目 2012AA12A308

    详细信息
      作者简介:

      谭琨(1981-), 男, 博士, 主要从事高光谱遥感、环境遥感和模式识别研究.E-mail: tankun@cumt.edu.cn

      通讯作者:

      杜培军, E-mail: dupjrs@126.com

    • 中图分类号: X87

    Hyperspectral Retrieval Model of Soil Organic Matter Content Based on Particle Swarm Optimization-Support Vector Machines

    • 摘要: 为了监测复垦矿区土壤的有机质含量, 综合利用光谱分析、统计学习理论与方法以及智能优化理论与方法, 研究了矿区复垦土壤有机质含量与土壤光谱之间的关系, 在此基础上建立了土壤有机质含量高光谱反演模型, 实现土壤有机质含量定量检测.首先对原始土壤光谱数据进行预处理, 然后进行相关性分析, 提取450 nm、500 nm、650 nm、770 nm、1 460 nm和2 140 nm作为特征波段, 最后利用多元线性回归(multiple linear regression, MLR)、偏最小乘回归(partial least squares regression, PLSR)和粒子群优化支持向量机回归(particle swarm optimization support vector machine regression, PSO-SVM)方法建立了土壤有机质含量的高光谱定量反演模型, 并对模型进行验证.3种模型的验证结果如下: MLR、PLSR和PSO-SVM模型的R2分别为0.79、0.83和0.85, RMSE分别为5.26、4.93和4.76.实验结果表明, 无论从模型的稳定性还是预测能力上, PSO-SVM都要优于其他两个模型.

       

    • 图  1  土壤样本光谱反射率曲线

      Fig.  1.  The spectral reflectance curves of the soil samples

      图  2  PSO-SVM模型建立流程

      Fig.  2.  The flowchart of the PSO-SVM model

      图  3  土壤有机质含量与不同变换形式光谱的相关系数随波长变化

      a.与平滑光谱;b.与一阶微分光谱;c.与标准正态变量变换光谱;d.与连续统去除光谱

      Fig.  3.  The distribution of the correlation coefficients between the SOM concentrations and the different transformed reflectance spectra

      图  4  不同模型有机质实测值与模型预测值之间的比较

      Fig.  4.  A comparison between the measured values and predicted values of the different models

      表  1  土壤有机质含量检测统计结果

      Table  1.   The statistical results of the SOM

      最大值(g/kg) 最小值(g/kg) 平均值(g/kg) 标准差(g/kg)
      有机质 53.00 8.50 29.53 12.64
      下载: 导出CSV

      表  2  土壤有机质含量定量反演模型的特征光谱

      Table  2.   The characteristic spectra of the quantitative inversion model of SOM

      变量名 波段(nm) 相关系数
      SNV(R) 450 0.87
      SNV(R) 500 0.90
      CR(R) 650 0.83
      CR(R) 770 0.87
      SNV(R) 1 460 -0.81
      CR(R) 2 140 0.87
      下载: 导出CSV

      表  3  土壤有机质含量预反演模型的精度统计结果

      Table  3.   The results of the quantitative inversion models of SOM

      模型 R2 RMSE
      MLR 0.79 5.26
      PLSR 0.83 4.93
      PSO-SVM 0.85 4.76
      下载: 导出CSV
    • [1] Chu, X.L., Yuan, H.F., Lu, W.Z., 2004. Progress and Application of Spectral Data Pretreatment and Wavelength Selection Methods in NIR Analytical Technique. Progress in Chemistry, 16(4): 528-542(in Chinese with English abstract). http://www.researchgate.net/publication/279620861_Progress_and_application_of_spectral_data_pretreatment_and_wavelength_selection_method_in_NIR_analytical_technique
      [2] Demattê, J.A.M., Sousa, A.A., Alves, M.C., et al., 2006. Determining Soil Water Status and Other Soil Characteristics by Spectral Proximal Sensing. Geoderma, 135: 179-195. doi: 10.1016/j.geoderma.2005.12.002
      [3] Hair, J.F., Sarstedt, M., Ringle, C.M., et al., 2012. An Assessment of the Use of Partial Least Squares Structural Equation Modeling in Marketing Research. Journal of the Academy of Marketing Science, 40(3): 414-433. doi: 10.1007/s11747-011-0261-6
      [4] He, J.L., Jiang, J.J., Zhou, S.L., et al., 2007. The Hyperspectral Characteristics and Retrieval of Soil Organic Matter Content. Scientia Agricultura Sinica, 40(3): 638-643(in Chinese with English abstract). http://agris.fao.org/agris-search/search.do?recordID=CN2007000678
      [5] Hummel, J.W., Sudduth, K.A., Hollinger, S.E., 2001. Soil Moisture and Organic Matter Prediction of Surface and Subsurface Soils Using an Nir Soil Sensor. Computers and Electronics in Agriculture, 32(2): 149-165. doi: 10.1016/S0168-1699(01)00163-6
      [6] Kennedy, J., 2010. Particle Swarm Optimization. Springer, New York, 760-766.
      [7] Liu, H.J., Zhang, B., Zhao, J., et al., 2007. Spectral Models for Prediction of Organic Matter in Black Soil. Acta Petrologica Sinica, 44(1): 27-32(in Chinese with English abstract). http://pedologica.issas.ac.cn/trxben/ch/reader/view_abstract.aspx?file_no=20070105&flag=1
      [8] Liu, H.J., Zhang, X.L., Zheng, S.F., et al., 2010. Black Soil Organic Matter Predicting Model Based on Field Hyperspectral Reflectance. Spectroscopy and Spectral Analysis, 30(12): 3355-3358(in Chinese with English abstract). http://europepmc.org/abstract/MED/21322239
      [9] Liu, W.D., Baret, F., Gu, X.F., et al., 2002. Relating Soil Surface Moisture to Reflectance. Remote Sensing of Environment, 81(2-3): 238-246. doi: 10.1016/S0034-4257(01)00347-9
      [10] Lu, Y.L., Bai, Y.L., Yang, L.P., et al., 2008. Application of Hyperspectral Data for Soil Organic Matter Estimation Based on Principle Components Regerssion Analysis. Plant Nutrition and Fertilizer Science, 14(6): 1076-1082(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZWYF200806010.htm
      [11] Luan, F.M., Zhang, X.L., Xiong, H.G., et al., 2013. Comparative Analysis of Soil Organic Matter Content Based on Different Hyperspectral Inversion Models. Spectroscopy and Spectral Analysis, 33(1): 196-200(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/23586255
      [12] Ren, H.Y., Zhuang, D.F., Singh, A., et al., 2009. Estimation of As and Cu Contamination in Agricultural Soils around a Mining Area by Reflectance Spectroscopy: A Case Study. Pedosphere, 19(6): 719-726. doi: 10.1016/S1002-0160(09)60167-3
      [13] Sha, J.M., Chen, P.C., Lin, C.S., 2003. Characteristics Analysis of Soil Spectrum Response Resulted from Organic Material. Research of Soil and Water Conservation, 10(2): 21-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBY200302005.htm
      [14] Shen, R.P., Ding, G.X., Wei, G.S., et al., 2009. Retrieval of Soil Organic Matter Content from Hyper-Spectrum Based on Ann. Acta Petrologica Sinica, 46(3): 391-397(in Chinese with English abstract). http://www.cabdirect.org/abstracts/20093255951.html
      [15] Smola, A.J., Schölkopf, B., 2004. A Tutorial on Support Vector Regression. Statistics and Computing, 14(3): 199-222. doi: 10.1023/B:STCO.0000035301.49549.88
      [16] Svensson, O., Kourti, T., Macgregor, J.F., 2002. An Investigation of Orthogonal Signal Correction Algorithms and Their Characteristics. Journal of Chemometrics, 16(4): 176-188. doi: 10.1002/cem.700
      [17] Wang, J., He, T., Li, Y.H., 2005. Studying on Extraction Methods for Land Quality Information Based on Hyperspectral Data. Journal of Remote Sensing, 9(4): 438-445(in Chinese with English abstract).
      [18] Wold, H., 1985. Partial Least Squares. Encyclopedia of Statistical Sciences. John Wiley & Sons. Inc. USA, 9. doi: 10.1002/0471667196.ess1914.pub2
      [19] Xu, Y.M., Zhong, L.Q., Wang, L., et al., 2006. Model for Estimating Soil Nutrient Elements Based on High Resolution Reflectance Spectra. Acta Petrologica Sinica, 43(5): 709-716(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB200605000.htm
      [20] Zheng, L.H., Li, M.Z., An, X.F., et al., 2010. Forecasting Soil Parameters Based on NIR and SVM. Transactions of the CSAE, 26(Suppl. 2): 81-87(in Chinese with English abstract). http://www.cqvip.com/QK/90712X/2010S2/3000101830.html
      [21] Zheng, L.H., Li, M.Z., Pan, L., et al., 2008. Estimation of Soil Organic Matter and Soil Total Nitrogen Based on NIR Spectroscopy and BP Neural Network. Spectroscopy and Spectral Analysis, 28(5): 1160-1164(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GUAN200805050.htm
      [22] Zuo, L., Hou, L.G., Zhang, W., et al., 2010. Analog Circuit Fault Diagnosis Based on Partical Swarm Optimization Support Vector Machine. Systems Engineering and Electronics, 32(7): 1553-1556(in Chinese with English abstract). http://www.researchgate.net/publication/292252220_Analog_circuit_fault_diagnosis_based_on_particle_swarm_optimization_support_vector_machine
      [23] 褚小立, 袁洪福, 陆婉珍, 2004. 近红外分析中光谱预处理及波长选择方法进展与应用. 化学进展, 16(4): 528-542. doi: 10.3321/j.issn:1005-281X.2004.04.008
      [24] 贺军亮, 蒋建军, 周生路, 等, 2007. 土壤有机质含量的高光谱特性及其反演. 中国农业科学, 40(3): 638-643. doi: 10.3321/j.issn:0578-1752.2007.03.030
      [25] 刘焕军, 张柏, 赵军, 等, 2007. 黑土有机质含量高光谱模型研究. 土壤学报, 44(1): 27-32. doi: 10.3321/j.issn:0564-3929.2007.01.005
      [26] 刘焕军, 张新乐, 郑树峰, 等, 2010. 黑土有机质含量野外高光谱预测模型. 光谱学与光谱分析, 30(12): 3355-3358. doi: 10.3964/j.issn.1000-0593(2010)12-3355-04
      [27] 卢艳丽, 白由路, 杨俐苹, 等, 2008. 基于主成分回归分析的土壤有机质高光谱预测与模型验证. 植物营养与肥料学报, 14(6): 1076-1082. doi: 10.3321/j.issn:1008-505X.2008.06.008
      [28] 栾福明, 张小雷, 熊黑钢, 等, 2013. 基于不同模型的土壤有机质含量高光谱反演比较分析. 光谱学与光谱分析, 33(1): 196-200. doi: 10.3964/j.issn.1000-0593(2013)01-0196-05
      [29] 沙晋明, 陈鹏程, 陈松林, 2003. 土壤有机质光谱响应特性研究. 水土保持研究, 10(2): 21-24. doi: 10.3969/j.issn.1005-3409.2003.02.006
      [30] 沈润平, 丁国香, 魏国栓, 等, 2009. 基于人工神经网络的土壤有机质含量高光谱反演. 土壤学报, 46(3): 391-397. doi: 10.3321/j.issn:0564-3929.2009.03.003
      [31] 王静, 何挺, 李玉环, 2005. 基于高光谱遥感技术的土地质量信息挖掘研究. 遥感学报, 9(4): 438-445. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200504014.htm
      [32] 徐永明, 蔺启忠, 王璐, 等, 2006. 基于高分辨率反射光谱的土壤营养元素估算模型. 土壤学报, 43(5): 709-716. doi: 10.3321/j.issn:0564-3929.2006.05.001
      [33] 郑立华, 李民赞, 安晓飞, 等, 2010. 基于近红外光谱和支持向量机的土壤参数预测. 农业工程学报, 26(增刊2): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2010S2017.htm
      [34] 郑立华, 李民赞, 潘娈, 等, 2008. 基于近红外光谱技术的土壤参数BP神经网络预测. 光谱学与光谱分析, 28(5): 1160-1164. doi: 10.3964/j.issn.1000-0593.2008.05.047
      [35] 左磊, 侯立刚, 张旺, 等, 2010. 基于粒子群支持向量机的模拟电路故障诊断. 系统工程与电子技术, 32(7): 1553-1556. doi: 10.3969/j.issn.1001-506X.2010.07.047
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  3222
    • HTML全文浏览量:  189
    • PDF下载量:  574
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-04-15
    • 刊出日期:  2015-08-01

    目录

      /

      返回文章
      返回