The Application of Spectral Characteristic Space Method to the Alteration Information Extraction of Lake Superior-Type Iron Deposit
-
摘要: 由于境外铁矿床位置偏远, 现场研究困难, 旨在探讨苏必利尔湖型铁矿的高光谱遥感蚀变信息提取方法, 为境外找矿提供依据.鉴于传统蚀变信息提取方法的局限性, 研究了在二维光谱特征空间中提取蚀变信息的方法.高光谱影像经主成分变换后, 包含较多地物信息的两个主成分的二维光谱特征空间体现了各向异性的特点, 不同地物的聚类常呈类似椭圆分布.在蚀变信息的聚类椭圆中圈定散点, 并应用波谱特征拟合, 将异常散点的平均光谱与美国地质调查局(United States Geological Survey, USGS)光谱库中的矿物光谱匹配, 确定蚀变矿物类型.以苏必利尔湖型铁矿——巴西Aguas Claras铁矿区为例, 提取了赤铁矿、绿泥石等蚀变矿物, 结果表明矿物的类型和分布与该区地质概况吻合.
-
关键词:
- 光谱特征空间 /
- 蚀变矿物 /
- 二维散点图 /
- 遥感 /
- Hyperion数据
Abstract: The field study of overseas iron ore deposits is difficult because of its remote location. The spectral characteristic was used to extract alteration information in view of the limitation of the traditional methods in this paper, aiming to explore alteration information extraction from hyperspectral images for the Lake Superior type iron ore to facilitate overseas prospecting. A two-dimensional spectral characteristic space takes on an anisotropic feature in associated distribution of two principal bands after principal component analysis. The distribution is usually combined by oval clusters. The scatter points were enclosed in oval clusters of alteration information, and the mean spectra of abnormal scatter points were matched with mineral spectra from United States Geological Survey(USGS) spectral library by means of spectral feature fitting to ensure the type of alteration minerals. Spectral characteristic space method was described with the instance of Lake Superior-type iron deposit—Aguas Claras iron area in Brazil. Hematite, chlorite and other minerals were extracted in this study. It is found that the type and distribution of extracted altered minerals were consistent well with geological condition.-
Key words:
- spectral characteristic space /
- alteration minerals /
- 2D scatter plot /
- remote sensing /
- Hyperion data
-
表 1 Hyperion数据主成分特征贡献值
Table 1. Principal component from Hyperion data
主成分 Band 19 Band 20 Band 21 Band 54 Band 55 Band 203 Band 204 Band 205 Band 206 PC1 0.132 8 0.146 8 0.450 1 0.539 9 0.294 3 0.305 2 0.302 5 0.278 8 0.343 1 PC2 -0.009 8 -0.110 9 0.865 9 -0.090 8 -0.168 0 -0.187 4 -0.244 3 -0.242 5 -0.218 5 PC3 -0.314 0 -0.334 0 -0.160 0 0.746 7 -0.073 3 -0.034 1 -0.069 0 -0.170 9 -0.407 7 PC4 0.437 1 0.715 0 -0.062 8 0.211 9 -0.184 6 -0.086 7 -0.013 5 -0.030 5 -0.454 1 PC5 0.263 3 0.070 8 -0.122 9 0.231 3 0.161 1 -0.037 1 -0.629 2 -0.450 5 0.480 5 PC6 0.029 4 -0.027 5 0.012 7 -0.203 8 0.530 4 0.650 6 -0.208 1 -0.134 3 -0.436 6 PC7 -0.080 8 0.013 7 0.007 6 0.027 6 -0.663 8 0.572 5 -0.355 6 0.293 4 0.107 1 PC8 -0.556 4 0.381 6 0.041 2 0.013 0 0.288 9 -0.253 3 -0.440 6 0.447 9 -0.020 5 PC9 -0.553 4 0.438 0 0.033 5 -0.042 9 -0.119 4 0.215 4 0.289 9 -0.570 6 0.169 3 -
[1] Chen, L., Zhang, W., Zhou, Y., 2012. Application of High-Resolution Remote Sensing Image to Searching for Sedimentary-Metamorphic Type Iron Deposits in the Taxkorgan Area, Xinjiang. Geology and Exploration, 48(5): 1039-1048(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dzykt201205021.aspx [2] Crosta, A.P., Sabine, C., Taranik, J.V., 1998. Hydrothermal Alteration Mapping at Bodie, California, Using AVIRIS Hyperspectral Data. Remote Sensing of Environment, 65(3): 309-319. doi: 10.1016/S0034-4257(98)00040-6 [3] Dai, J.J., 2012. Remote Sensing Model for Magmatic Liquation Iron Deposit Prediction in Western Ethiopia. Remote Sensing Technology and Application, 27(3): 380-386(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201203010.htm [4] Farifteh, J., Nieuwenhuis, W., García-Meléndez, E., 2013. Mapping Spatial Variations of Iron Oxide by-Product Minerals from EO-1 Hyperion. International Journal of Remote Sensing, 34(2): 682-699. doi: 10.1080/01431161.2012.715776 [5] Hu, B., Zhu, G.C., Zhang, Y.F., et al., 2011. The Application of Spatial U-Static Method to the Extraction of Alteration Anomalies. Remote Sensing for Land & Resources, 23(3): 71-76(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTYG201103015.htm [6] Huang, X.Z., 2012. Study of Metallogenic Prognosis Based on Remote Sensing of Suizhou-Dawu Area, Hubei Province. Resources Environment and Engineering, 26(4): 388-393 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-HBDK201204018.htm [7] Kruse, F.A., 2003. Preliminary Results-Hyperspectral Mapping of Coral Reef Systems Using EO-1 Hyperion, Buck Island, US Virgin Islands. InJPL Airborne Earth Science Workshop, 12(2003): 157-173. http://www.researchgate.net/publication/237567204_PRELIMINARY_RESULTS_-_HYPERSPECTRAL_MAPPING_OF_CORAL_REEF_SYSTEMS_USING_EO1_HYPERION_BUCK_ISLAND_US_VIRGIN_ISLANDS [8] Li, H., Zhu, G.C., Zhang, Y.F., et al., 2010. Reflectance Spectral Characteristics and Spatial Structure of Typical Objects in Mineralization and Alteration Areas: A Case Study of the Tuquan-Jarud County Metallogenic Belt in Inner Mongolia. Remote Sensing for Land & Resources, 22(1): 89-95(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTYG201001019.htm [9] Lobato, L.M., Vieira, F.W.D.R., Rebeiro-Rodrigues, L.C., et al., 1998. Styles of Hydrothermal Alteration and Gold Mineralizations Associated with the Nova Lima Group, Quadrilátero Ferrífero: Part I, Description of Selected Gold Deposits. Brazilian Journal of Geology, 28(3): 339-354. http://www.researchgate.net/publication/288009104_Styles_of_hydrothermal_alteration_and_gold_mineralization_associated_with_the_Nova_Lima_Group_of_the_Quadrilatero_Ferrifero_Part_I_description_of_selected_gold_deposits [10] Spier, C.A., de Oliveira, S.M.B., Sial, A.N., et al., 2007. Geochemistry and Genesis of the Banded Iron Formations of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Research, 152(3): 170-206. doi: 10.1016/j.pr-ecamres.2006.10.003 [11] Trendall, A.F., 1968. Three Great Basins of Precambrian Banded Iron Formation Deposition: A Systematic Comparison. Geological Society of America Bulletin, 79(11) : 1527-1544. doi: 10.1130/0016-7606(1968)79[1527:TGBOPB]2.0.CO; [12] van Der Meer, F., 2004. Analysis of Spectral Absorption Features in Hyperspectral Imagery. International Journal of Applied Earth Observation and Geoinformation, 5(1): 55-68. doi: 10.1016/j.jag.2003.09.001 [13] Zhao, Z.F., Guo, F.D., 2010. A Study on the Close-Range Ore Prospecting Mark of Remote Sensing Geology and Metallogenetic Prognosis of Huimin Fe Deposit. Yunnan Geology, 29(4): 434-437(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_yunnan-geology_thesis/0201254433558.html [14] 陈玲, 张微, 周艳, 等, 2012. 高分辨率遥感影像在新疆塔什库尔干地区沉积变质型铁矿勘查中的应用. 地质与勘探, 48(5): 1039-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201205023.htm [15] 代晶晶, 2012. 埃塞俄比亚西部岩浆熔离铁矿遥感找矿模型. 遥感技术与应用, 27(3): 380-386. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201203010.htm [16] 胡波, 朱谷昌, 张远飞, 等, 2011. 空间U统计量法在遥感蚀变信息提取中的应用研究. 国土资源遥感, 23(3): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201103015.htm [17] 黄祥芝, 2012. 湖北随州-大悟地区遥感预测成矿研究. 资源环境与工程, 26(4): 388-393. doi: 10.3969/j.issn.1671-1211.2012.04.016 [18] 李红, 朱谷昌, 张远飞, 等, 2010. 矿化蚀变区典型地物光谱特征分析与空间结构研究——以内蒙古突泉县-扎鲁特旗成矿带为例. 国土资源遥感, 22(1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201001019.htm [19] 赵志芳, 郭富达, 2010. 云南惠民铁矿遥感近矿找矿标志及成矿预测. 云南地质, 29(4): 434-437. doi: 10.3969/j.issn.1004-1885.2010.04.014