• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于植被胁迫光谱的高光谱遥感植被元素富集信息提取

    帅琴 黄爽 李志忠 陈圣波 徐守礼

    帅琴, 黄爽, 李志忠, 陈圣波, 徐守礼, 2015. 基于植被胁迫光谱的高光谱遥感植被元素富集信息提取. 地球科学, 40(8): 1319-1324. doi: 10.3799/dqkx.2015.112
    引用本文: 帅琴, 黄爽, 李志忠, 陈圣波, 徐守礼, 2015. 基于植被胁迫光谱的高光谱遥感植被元素富集信息提取. 地球科学, 40(8): 1319-1324. doi: 10.3799/dqkx.2015.112
    Shuai Qin, Huang Shuang, Li Zhizhong, Chen Shengbo, Xu Shouli, 2015. The Metal Element Information Extraction from Hyperion Data Based on the Vegetation Stress Spectra. Earth Science, 40(8): 1319-1324. doi: 10.3799/dqkx.2015.112
    Citation: Shuai Qin, Huang Shuang, Li Zhizhong, Chen Shengbo, Xu Shouli, 2015. The Metal Element Information Extraction from Hyperion Data Based on the Vegetation Stress Spectra. Earth Science, 40(8): 1319-1324. doi: 10.3799/dqkx.2015.112

    基于植被胁迫光谱的高光谱遥感植被元素富集信息提取

    doi: 10.3799/dqkx.2015.112
    基金项目: 

    国家自然科学基金项目 41402293

    国家高技术研究发展计划(863计划)项目 2008AA121100

    国家高技术研究发展计划(863计划)项目 2012AA12A308

    详细信息
      作者简介:

      帅琴(1963-), 女, 教授, 主要研究方向为地质分析.E-mail: shuaiqin@cug.edu.cn

      通讯作者:

      黄爽, E-mail: hsmylife2012@163.com

    • 中图分类号: P627

    The Metal Element Information Extraction from Hyperion Data Based on the Vegetation Stress Spectra

    • 摘要: 含矿层中成矿元素的迁移富集可胁迫影响上覆植物光谱, 因此, 利用植物响应特征提取成矿元素富集信息可指示潜在的矿床位置.以内蒙古西乌旗草原覆盖区为例, 采集典型植物光谱并测试元素含量, 分析红边和吸收深度对不同成矿元素的敏感性, 并进行模型显著性参数检验, 建立了基于植物吸收深度的Co和W元素响应模型, 应用于示范区的Hyperion影像, 圈定了Co和W元素富集信息.结合野外实地采样验证, 富集点元素含量均高于背景值.该研究可为植被覆盖区的高光谱遥感地质调查提供新的思路.

       

    • 图  1  研究区采样点分布

      Fig.  1.  The distribution of sampling point in study area

      图  2  红边位置与元素含量的相关性分析

      Fig.  2.  Analysis of relation between red edge position and elements content

      图  3  各采样点植物的光谱吸收深度

      Ⅰ类样点.植物元素含量高于均值和标准差;Ⅱ类样点.植物元素含量低于均值和标准差

      Fig.  3.  Spectral absorption depth of vegetation in each sample site

      图  4  研究区富集元素分布

      Fig.  4.  The distribution of metal elements enrichment in study area

      图  5  富集点的Co和W元素含量与背景值对比

      Fig.  5.  Elements contents of Co and W in enrichment point and background value compared

      表  1  植被元素含量

      Table  1.   Elements content within vegetation

      Au As Co Cu Hg Ni Pb W Zn
      NXV01-1 羊草 0.41 218.00 24.50 5 459.00 238.00 532.00 549.00 144.00 19 180.00
      NXV01-2 糙隐子草 0.61 294.00 113.00 6 604.00 159.00 1 352.00 954.00 336.00 27 660.00
      NXV01-3 大针茅 1.88 359.00 125.00 3 651.00 223.00 647.00 2 725.00 172.00 15 440.00
      NXV03 大针茅 0.58 272.00 37.70 4 136.00 142.00 776.00 916.00 19.30 19 110.00
      NXV04-1 大针茅 0.40 337.00 247.00 4 240.00 245.00 366.00 1 452.00 193.00 20 640.00
      NXV05-1 大针茅 0.54 235.00 0.33 2 466.00 78.90 479.00 491.00 6.34 12 040.00
      NXV05-2 糙隐子草 0.30 481.00 88.80 7 321.00 165.00 811.00 1 135.00 29.60 10 880.00
      NXV06-2 糙隐子草 0.57 572.00 394.00 7 971.00 207.00 867.00 2 208.00 247.00 27 240.00
      NXV08-1 大针茅 0.51 461.00 303.00 6 201.00 461.00 571.00 2 347.00 60.80 12 410.00
      NXV08-2 羊草 0.67 249.00 33.80 4 069.00 536.00 170.00 346.00 22.50 15 690.00
      NXV10-1 大针茅 0.69 469.00 148.00 4 129.00 281.00 551.00 2 883.00 86.50 9 603.00
      NXV11-1 大针茅 0.38 430.00 236.00 7 885.00 215.00 1 010.00 1 282.00 24.10 24 250.00
      均值 0.62 370.54 142.16 5 302.92 247.76 647.85 1 497.54 112.09 17 878.69
      标准偏差 0.38 108.22 114.95 1 682.45 120.27 305.22 839.91 98.12 5 731.83
      变异系数 61.90 29.20 80.90 31.70 48.50 47.10 56.10 87.50 32.10
      注:植物含量单位:ng/g.
      下载: 导出CSV

      表  2  金属元素Co和W含量与光谱吸收深度拟合方程

      Table  2.   Regression equation between the absorption depths and the contents of Co and W

      拟合方程 R2 R
      MCo=-2 543.752+1 200.211x1-14 161.749x2+12 005.275x3+ 3 038.511x4-89.022x5 0.996 0 0.997 9
      MW=-972.878+1 908.580x1-11 395.301x2+8 814.099x3+1 886.741x4 0.949 9 0.974 6
      注:x1x2x3x4x5x6x7分别表示(750-550)/(n-1)处的波段吸收深度值.
      下载: 导出CSV
    • [1] Chen, S.B., Liu, Y.L., Yang, Q., et al., 2012a. Lithologic Classification from Hyperspectral Data in Dense Vegetation Cover Area. Journal of Jilin University: Earth Science Edition, 42(6): 1959-1965(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201206044.htm
      [2] Chen, S.B., Zhou, C., Wang, J.N., 2012b. Vegetation Stress Spectra and Their Relation with the Contents of Metal Elements within the Plant Leaves in Metal Mines in Heilongjiang. Spectroscopy and Spectral Analysis, 32(5): 1310-1315(in Chinese with English abstract).
      [3] Darvishzadeh, R., Skidmore, A., Schlerf, M., et al., 2008. LAI and Chlorophyll Estimation for a Heterogeneous Grassland Using Hyperspectral Measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4): 409-426. doi: 10.1016/j.isprsjprs.2008.01.001
      [4] Gan, F.P., Liu, S.W., Zhou, Q., 2004. Identification of Mining Pollution Using Hyperion Data at Dexing Copper Mine Jiangxi Province, China. Earth Science—Journal of China University of Geosciences, 29(1): 119-126(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200401020.htm
      [5] Gitelson, A.A., Merzlyak, M.N., Lichtenthaler, H.K., 1996. Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm. Journal of Plant Physiology, 148(3-4): 501-508. doi: 10.1016/s0176-1617(96)80285-9
      [6] Gong, S.Q., Wang, X., Shen, R.P., et al., 2010. Study on Heavy Metal Element Content in the Coastal Saline Soil by Hyperspectral Remote Sensing. Remote Sensing Technology and Application, 25(2): 169-177(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201002000.htm
      [7] Houborg, R., Anderson, M., Daughtry, C., 2009. Utility of an Image-Based Canopy Reflectance Modeling Tool for Remote Estimation of LAI and Leaf Chlorophyll Content at the Field Scale. Remote Sensing of Environment, 113(1): 259-274. doi: 10.1016/j.rse.2008.09.014
      [8] Huang, Z., Turner, B.J., Dury, S.J., et al., 2004. Estimating Foliage Nitrogen Concentration from HYMAP Data Using Continuum Removal Analysis. Remote Sensing of Environment, 93(1-2): 18-29. doi: 10.1016/j.rse.2004.06.008
      [9] Kruse, F.A., Boardman, J.W., Huntington, J.F., 2003. Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1388-1400. doi: 10.1109/tgrs.2003.812908
      [10] Lin, F.F., Chen, Z.L., Wang, K., et al., 2009. Determination of Nitrogen in Rice Leaf Based on Ftir Spectra and siPLS-GA-PLS Algorithm. Journal of Infrared and Millimeter Waves, 28(4): 277-280(in Chinese with English abstract). doi: 10.3724/SP.J.1010.2009.00277
      [11] Rosso, P.H., Pushnik, J.C., Lay, M., et al., 2005. Reflectance Properties and Physiological Responses of Salicornia Virginica to Heavy Metal and Petroleum Contamination. Environmental Pollution, 137(2): 241-252. doi: 10.1016/j.envpol.2005.02.025
      [12] Sánchez-Azofeifa, G.A., Castro, K., Wright, S.J., et al., 2009. Differences in Leaf Traits, Leaf Internal Structure, and Spectral Reflectance between Two Communities of Lianas and Trees: Implications for Remote Sensing in Tropical Environments. Remote Sensing of Environment, 113(10): 2076-2088. doi: 10.1016/j.rse.2009.05.013
      [13] Xu, M.X., Wu, S.H., Zhou, S.L., et al., 2011. Hyperspectral Reflectance Models for Retrieving Heavy Metal Content: Application in the Archaeological Soil. J. Infrared Milli. Waves, 30(2): 109-114(in Chinese with English abstract). http://www.oalib.com/paper/1598232
      [14] Zarco-Tejada, P.J., Miller, J.R., Morales, A., et al., 2004. Hyperspectral Indices and Model Simulation for Chlorophyll Estimation in Open-Canopy Tree Crops. Remote Sensing of Environment, 90(4): 463-476. doi: 10.1016/j.rse.2004.01.017
      [15] Zhu, X.Y., Zhou, H., Yu, X.B., 2009. The Calculation Methods of Permeability Variation Coefficient-Taking Ningdong Oilflied in Mahuangshan West Block as An Example. Offshore Oil, 29(2): 23-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYSY200902006.htm
      [16] Zhu, Y.Q., Qu Y.H., Liu S.H., et al., 2014. A Reflectance Spectra Model for Copper-Stressed Leaves: Advances in the PROSPECT Model through Addition of the Specific Absorption Coefficients of the Copper Ion. International Journal of Remote Sensing, 35(4): 1356-1373. doi: 10.1080/01431161.2013.876123
      [17] 陈圣波, 刘彦丽, 杨倩, 等, 2012a. 植被覆盖区卫星高光谱遥感岩性分类. 吉林大学学报: 地球科学版, 42(6): 1959-1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206044.htm
      [18] 陈圣波, 周超, 王晋年, 2012b. 黑龙江多金属矿区植物胁迫光谱及其与金属元素含量关系研究. 光谱学与光谱分析, 32(5): 1310-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201205043.htm
      [19] 甘甫平, 刘圣伟, 周强, 2004. 德兴铜矿矿山污染高光谱遥感直接识别研究. 地球科学——中国地质大学学报, 29(1): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401020.htm
      [20] 龚绍琦, 王鑫, 沈润平, 等, 2010. 滨海盐土重金属含量高光谱遥感研究. 遥感技术与应用, 25(2): 169-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201002000.htm
      [21] 林芬芳, 陈祝炉, 王珂, 等, 2009. 基于傅里叶变换红外光谱和siPLS-GA-PLS的水稻叶片氮素含量预测研究. 红外与毫米波学报, 28(4): 277-280. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200904008.htm
      [22] 徐明星, 吴绍华, 周生路, 等, 2011. 重金属含量的高光谱建模反演: 考古土壤中的应用. 红外与毫米波学报, 30(2): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201102004.htm
      [23] 朱小影, 周红, 余训兵, 2009. 渗透率变异系数的几种计算方法——以麻黄山西区块宁东油田2, 3井区为例. 海洋石油, 29(2): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY200902006.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  2607
    • HTML全文浏览量:  97
    • PDF下载量:  289
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-03-19
    • 刊出日期:  2015-08-01

    目录

      /

      返回文章
      返回