The Quality Assessment of Hymap Simulation Spaceborne Hyperspectral Data
-
摘要: 为了有效、合理、客观地评价高光谱卫星数据质量, 充分发挥其在矿产及能源普查方面的作用, 进行了一系列研究.围绕最具代表性的3种载荷指标(几何空间分辨率、波谱分辨率及信噪比)的不同尺度, 从均方差异常、直方图异常、数据相关性异常、反射率曲线异常、信噪比参量以及该模拟数据的实际应用(蚀变信息提取和矿物填图)等多角度入手, 系统而全面地分析了模拟星载Hymap高光谱数据针对不同指标与尺度的影像质量效果.研究结果表明, 这3种载荷指标之间相互制约, 并随着空间分辨率和波谱分辨率的提高将降低图像的信噪比.当几何空间分辨率为15 m、波谱分辨率为15~20 nm, 同时信噪比≥350时, 就可以满足常规的矿物填图要求.Abstract: In order to evaluate the hyperspectral satellite data quality effectively, rationally and objectively to facilitate mineral and energy exploration, we carried out an in-depth study, centering on the most representative load indexes (geometric spatial resolution, spectral resolution and signal-to-noise ratio). systematically and comprehensively analysing the image quality effect on different loading indicators and scale of analog spaceborne Hymap hyperspectral data by multi-angle research methods including mean squared error (MSE) abnormalities, abnormal histogram, data related abnormalities, abnormal reflectivity curve, the signal-noise ratio (SNR) parameter and the practical application of the analog data (alteration information extraction and mineral mapping). Results suggest that the three load index restrict each other. With the improvement of spatial resolution and spectral resolution, SNR will reduce. When the geometric space resolution is 15 m, spectral resolution is 15-20 nm, and SNR≥350, it can satisfy the requirement of the conventional mineral mapping.
-
Key words:
- analog spaceborne hyperspectral data /
- remote sensing /
- quality assessment /
- mineral
-
表 1 载荷模拟数据的参数设置
Table 1. The parameters set of the load simulation data
参数设置 指标参数 成像时间(GMT) 2010-06-01,06∶30∶00 A.M. 成像区域中心坐标 42°11′20.37″N,265°51′59.87″W 地面平均海拔 0.8 km 地表温度 300 K 大气类型 中纬度夏季 气溶胶类型 乡村,能见度为23 km 传感器高度 650 km 传感器观测角度 180° 空间分辨率 15、45、60和75 m 光谱范围 400~1 000 nm(VNIR)900~2 500 nm(SWIR) 光谱分辨率 30、25、20、15和5 nm 波段数 120(VNIR)160(SWIR) MTF(奈奎斯特频率) 0.2 信噪比(地面反照率0.3,太阳天顶角30°) 200(VNIR)150(SWIR) 量化位数 12 bit 动态范围 20 μw/(cm2×sr×nm)(VNIR) 11 μw/(cm2×sr×nm)(SWIR) 注:据赵慧洁,2009. 矿物光谱分解算法开发和弱信息识别技术研究.矿物光谱分解算法开发和弱信息识别技术研究设计方案报告 -
[1] Chen, Q.L., Xue, Y.Q., 2000. Calculate the SNR of OMIS Imaging Spectrometer Data. Journal of Remote Sensing, 4(4): 284-289(in Chinese with English abstract). http://www.oalib.com/paper/1470304 [2] Cheng, P.Q., 2002. The Tutorial of Digital Signal Processing(Second Edition). Tsinghua University Press, Beijing(in Chinese). [3] Clark, R.N., King, T.V.V., Klejwa, M., et al., 1990. High Spectral Resolution Reflectance Spectroscopy of Minerals. Journal of Geophysical Research, 95(B8): 12653-12680. doi: 10.1029/jb095ib08p12653 [4] Gao, B.C., 1993. An Operational Method for Estimating Signal to Noise Ratios from Data Acquired with Imaging Spectrometers. Remote Sensing of Environment, 43(1): 23-33. doi: 10.1016/0034-4257(93)90061-2 [5] Han, M.X., 2010. Remote Sensing Data Quality Evaluation Method. Association for Science and Technology, (3): 86-86(in Chinese). [6] Jensen, J.R., 2007. Introduction to Digital Image Processing. Chen, X.L., Translated. Machinery Industry Press, Chengdu (in Chinese). [7] Keshk, H.M., Abdel-Aziem, M.M., Ali, A.S., et al., 2014. Performance Evaluation of Quality Measurement for Super-Resolution Satellite Images. Digital Image Processing, 6(2): 364-371. doi: 10.1109/SAI.2014.6918212 [8] Kruse, F.A., 2000. The Effects of Spatial Resolution, Spectral Resolution, and SNR on Geologic Mapping Using Hyperspectral Data, Northern Grapevine Mountains, Nevada. In: Proceedings of the 9th JPL Airborne Earth Science Workshop, ed. . Jet Propulsion Laboratory Publication, California, 1-9. [9] Ma, D.M., 2004. Hyperspectral Image Quality Assessment. Infraded, (7): 18-23(in Chinese with English abstract). [10] Ma, S.B., An, Y.L., Zhang, Y.H., 2014. HJ-A Remote Sensing Satellite CCD Data Quality Evaluation. Journal of Liupanshui Teachers College, 26(2): 38-42(in Chinese with English abstract). [11] Paul, J.C., Jenniefr, L.D., 1989. Estimation of Signal to Noise: A New Porceduer Applied to AVIRIS Data. IEEE Geoscience and Remote Sensing, 27(5): 620-628. doi: 10.1109/TGRS.1989.35945 [12] Wang, K.Q., 2000. Quality Assessment of Digital Image. Measurement &Control Technology, 19(5): 14-16(in Chinese with English abstract). [13] Xiong, X.H., 2004. Digital Image Quality Evaluation Method Review. Science of Surveying and Mapping, 29(1): 68-71(in Chinese with English abstract). [14] Yuan, T., Zheng, X.Q., Hu, X., et al., 2014. A Method for the Evaluation of Image Quality According to the Recognition Effectiveness of Objects in the Optical Remote Sensing Image Using Machine Learning Algorithm. PLoS ONE, 9(1): e86528. doi: 10.1371/journal.pone.0086528 [15] 陈秋林, 薛永棋, 2000. OMIS成像光谱数据信噪比的计算. 遥感学报, 4(4): 284-289. [16] 程佩青, 2002. 数字信号处理教程(第二版). 北京: 清华大学出版社. [17] 韩孟啸, 2010. 遥感数据质量评价方法. 科协论坛, (3), 86-86. doi: 10.3969/j.issn.1007-3973.2010.03.045 [18] John R. Jensen著, 陈晓玲译, 2007. 数字影像处理导论. 成都: 机械工业出版社. [19] 马德敏, 2004. 高光谱图像质量评价. 红外, (7): 18-23. doi: 10.3969/j.issn.1672-8785.2004.07.004 [20] 马士彬, 安裕伦, 张跃红, 2014. HJ-A遥感卫星CCD数据质量评价. 六盘水师范学院学报, 26(2): 38-42. doi: 10.3969/j.issn.1671-055X.2014.02.011 [21] 汪孔桥, 2000. 数字影像的质量评价. 测控技术, 19(5): 14-16. doi: 10.3969/j.issn.1000-8829.2000.05.003 [22] 熊兴华, 2004. 数字影像质量评价方法评述. 测绘科学, 29(1): 68-71. doi: 10.3771/j.issn.1009-2307.2004.01.022