Specification Design of Hyperspectral Imaging Remote Sensor Used in Geosciences
-
摘要: 高光谱成像技术在地物精确分类上的巨大优势, 使其成为地学遥感领域的热点与主要技术手段.为确定适合地学应用的高光谱遥感器的指标体系, 分析了地学应用的需求, 以及高光谱传感器各指标之间的"约束"关系, 包括空间分辨率、光谱分辨率、幅宽以及信噪比等.提出了高分辨率与宽幅高光谱遥感器的指标体系, 利用宽幅高光谱数据与高分辨率高光谱数据, 可同时满足大范围调查以及重点区域详查的地学应用需求, 为未来地学应用高光谱遥感器的体系化发展提供了参考和支持.Abstract: Enjoying great advantage in accurate classification of ground objects, hyperspectral imaging technology has become popular in geological remote sensing. To determine the suitable sensor specifications for the geological applications, the users' demand and relationship between hyperspectral sensor's specifications including ground resolution, spectral resolution, swath and SNR are analyzed. Specifications of high resolution and wide swath hyper-spectral sensors for geosciences are proposed. Both large area searching and specific area monitoring in details can be achieved with the specifications system, which can facilitate further development of hyperspectral remote sensing in geological applications.
-
Key words:
- hyper-spectral /
- remote sensing /
- geology /
- specification
-
表 1 国外星载高光谱遥感器参数
Table 1. Parameters of foreign satellite hyperspectral sensors
仪器指标 HSI Hyperion COIS CHRIS OrbView-4 CRISM 国家 U.S.A. U.S.A. U.S.A. E.S.A. U.S.A. U.S.A. 卫星名 LEWIS EO-1 NEMO PROBA-1 Orbview-4 MRO 波段范围(μm) VNIR 0.40~1.00 0.40~1.00 0.40~1.00 0.40~1.05 0.45~5.00 0.40~1.05 SWIR 1.00~2.50 0.90~2.50 0.90~2.50 1.05~4.05 光谱通道数(个) VNIR 128 220 210 18 or 62 200 558 SWIR 256 空间分辨率(m) VNIR 30 30 30 or 60 17 or 34 8 or 20 < 50 SWIR 30 30 刈副(km) 7.68 7.50 30.00 18.60 5.00 >10 光谱分辨率(nm) VNIR 5.00~6.00 10.00 10.00 1.25~11.00 11.70 < 9 SWIR 5.80 扫描方式 推帚式 推帚式 推帚式 推帚式 推帚式 推帚式 分光 grating grating grating 棱镜 grating grating 轨道高度(km) 523.0 705.0 605.5 830.0 470.0 325.0 瞬时视场(mrad) 0.057 0.043 0.050 0.030 空间维像元 256 250 1 024 744 640 640 表 2 高分辨率高光谱遥感器指标体系
Table 2. Parameters of high resolution hyper-spectral sensor
项目 VNIR SWIR LWIR 光谱范围(μm) 0.4~1.0 1.0~2.5 8.0~12.5 光谱分辨率(nm) 5~10 10~20 40~160 每景图像幅宽(km) 30×30 30×30 30×30 空间分辨率(m) 5 5 20 信噪比 ≥200 ≥150 NEΔT∶0.2K@300K 辐射定标精度 ≤5% ≤5% 0.5K 光谱定标精度(nm) 0.5 1 8.0 表 3 宽幅高光谱遥感器指标体系
Table 3. Parameters of wide swath hyper-spectral sensor
项目 VNIR SWIR LWIR 光谱范围(μm) 0.4~1.0 1.0~2.5 8.0~12.5 光谱分辨率(nm) 5~10 10~20 40~160 每景图像幅宽(km) 120×120 120×120 120×120 空间分辨率(m) 30 30 60 信噪比 ≥250 ≥200 NEΔT∶0.2K@300K 辐射定标精度 ≤5% ≤5% 0.5K 光谱定标精度(nm) 0.5 1 8.0 -
[1] Hollinger, A., Bergeron, M., Maskiewicz, M., et al., 2006. Recent Developments in the Hyperspectral Environment and Resource Observer (HERO) Mission. IEEE International Symposium on Geoscience and Remote Sensing, (42): 1620-1623. doi: 10.1109/igarss.2006.418 [2] Huang, X.H., 1999. Evaluation of Effectiveness of Thermal Infrared Remote Sensing Applied in Oil Gas Exploration. IRSA. Collections on Knowledge Innovation in Remote Sensing. China Science and Technology Press, Beijing (in Chinese). [3] Liu, Y.N., Xue, Y.Q., Wang, J.Y., et al., 2002. Operational Modular Imaging Spectrometer. Journal of Infrared and Millimeter Waves, 10(1): 9-14(in Chinese with English abstract). http://www.researchgate.net/publication/293411184_Operational_modular_imaging_spectrometer/amp [4] Pearlman, J., Segal, C., Liao, L., et al., 2000. Development and Operations of the EO-1 Hyperion Imaging Spectrometer. Proceedings of SPIE, 4135: 243-253. doi: 10.1117/12.494251 [5] Puschell, J.J., Tompkins, P.A., 1997. Imaging Spectrometers for Future Earth Observing Systems. Proceedings of SPIE, (3117): 36-48. doi: 10.1117/12.283819 [6] Sang, B., Schubert, J., Kaiser, S., et al., 2008. The EnMAP Hyperspectral Imaging Spectrometer: Instrument Concept, Calibration, and Technologies. Imaging Spectrometry XIII, 708605. doi: 10.1117/12.794870 [7] Tong, Q.X., Xue, Y.Q., Zhang, L.F., 2014. Progress in Hyperspectral Remote Sensing Science and Technology in China over the Past Three Decades. IEEE Journal of Selectd Topics in Applied Earth Observations and Remote Sensing, 7(1): 2200-2215. doi: 10.1080/01431161.2012.742216 [8] Wang, J.H., Zhang, J.L., Liu, D.C., 2011. Discussion on the Application Potential of Thermal Infrared Remote Sensing Technology in Uranium Deposits Exploration. World Nuclear Geoscience, 28(1): 32-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWYD201101008.htm [9] Wang, J.X., Wang, H., Gao, J., 2000. Analysis Application of Space-Brone Hyperspectral Imaging Technology. Space Craft Recovery & Remote Sensing, 21(1): 40-42 (in Chinese with English abstract). [10] Yan, B.K., Wang, R.S., 2005. Progress in Minerals Information Exploration Using Thermal Remote Sensing. Advance in Earth Science, 20(10): 1116-1125 (in Chinese with English abstract). http://www.researchgate.net/publication/285167645_Progresses_in_Minerals_Information_Extraction_Using_Thermal_Remote_Sensing [11] Yoshiki, N., 2003. Rock Type Mapping with Indices Defined for Multispectral Thermal Infrared ASTER Data: Case Studies. Proceedings of SPIE, (4886): 123-132. doi: 10.1117/12.462358 [12] Zheng, Y.Q., Yu, B.X., 2002. Overview of Spectrum Dividing Technology in Imaging Spectrometers. Journal of Remote Sensing, 6(1): 75-80(in Chinese with English abstract). http://www.oalib.com/paper/1471167 [13] 黄秀华, 1999. 热红外遥感找油应用效果评价. 中国科学院遥感应用研究所, 遥感知识创新文集. 北京: 中国科学技术出版社. [14] 刘银年, 薛永祺, 王建宇, 等, 2002. 实用型模块化成像光谱仪. 红外与毫米波学报, 10(1): 9-14. doi: 10.3321/j.issn:1001-9014.2002.01.003 [15] 王俊虎, 张杰林, 刘德长. 2011. 热红外遥感技术在铀矿勘查中的应用潜力探讨. 世界核地质科学, 28(1): 32-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201101008.htm [16] 王军霞, 王慧, 高军, 2000. 星载超光谱成像技术应用及现状分析. 航天返回与遥感, 21(1): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200001008.htm [17] 闫柏琨, 王润生, 2005. 热红外遥感岩矿信息提取研究进展. 地球科学进展, 20(10): 1116-1125. doi: 10.3321/j.issn:1001-8166.2005.10.011 [18] 郑玉权, 禹秉熙, 2002. 成像光谱仪分光技术概览. 遥感学报, 6(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200201013.htm
计量
- 文章访问数: 2881
- HTML全文浏览量: 129
- PDF下载量: 341
- 被引次数: 0