• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高光谱遥感技术及资源勘查应用进展

    李志忠 汪大明 刘德长 刘银年 赵慧洁 党福星

    李志忠, 汪大明, 刘德长, 刘银年, 赵慧洁, 党福星, 2015. 高光谱遥感技术及资源勘查应用进展. 地球科学, 40(8): 1287-1294. doi: 10.3799/dqkx.2015.108
    引用本文: 李志忠, 汪大明, 刘德长, 刘银年, 赵慧洁, 党福星, 2015. 高光谱遥感技术及资源勘查应用进展. 地球科学, 40(8): 1287-1294. doi: 10.3799/dqkx.2015.108
    Li Zhizhong, Wang Daming, Liu Dechang, Liu Yinnian, Zhao Huijie, Dang Fuxing, 2015. Hyperspectral Remote Sensing Technology and Its Progress in Resources Exploration. Earth Science, 40(8): 1287-1294. doi: 10.3799/dqkx.2015.108
    Citation: Li Zhizhong, Wang Daming, Liu Dechang, Liu Yinnian, Zhao Huijie, Dang Fuxing, 2015. Hyperspectral Remote Sensing Technology and Its Progress in Resources Exploration. Earth Science, 40(8): 1287-1294. doi: 10.3799/dqkx.2015.108

    高光谱遥感技术及资源勘查应用进展

    doi: 10.3799/dqkx.2015.108
    基金项目: 

    国家高技术研究发展计划(863计划)项目 2008AA121100

    国家高技术研究发展计划(863计划)项目 2012AA12A308

    国家自然科学基金项目 41402293

    详细信息
      作者简介:

      李志忠(1963-), 男, 研究员, 主要从事遥感地质研究

      通讯作者:

      汪大明, E-mail: daming82@qq.com

    • 中图分类号: P627

    Hyperspectral Remote Sensing Technology and Its Progress in Resources Exploration

    • 摘要: 高光谱遥感技术在可见光、近红外、中红外和远红外波段范围内可获取上百个窄光谱波段, 包含了丰富的空间、辐射和光谱3重信息.极高的光谱分辨率特性可以定性、定量探测在多光谱、宽波段遥感中不能被识别的物质.介绍了当前宽幅高光谱成像仪载荷研制最新进展以及星载高光谱成像数据模拟、定标与处理技术进展, 并在矿产资源和油气资源调查方面进行典型应用.高光谱遥感技术在资源勘查中的应用积累、技术研究以及全流程业务化信息系统平台开发对高光谱数据在资源能源勘查中的推广有重要意义.

       

    • 图  1  宽幅高光谱成像仪

      a.VNIR成像仪;b.SWIR成像仪

      Fig.  1.  Broad width hyperspectral imager

      图  2  高光谱成像仪结构

      a.OASIS离轴全球面棱镜分光系统;b.PGP光谱仪原理结构;c.迈克耳逊干涉仪

      Fig.  2.  Hyperspectral imager physical design

      图  3  高光谱成像仪集成

      Fig.  3.  Hyperspectral imager integration

      图  4  标准化预处理流程示意

      Fig.  4.  Flow chart of standardization image preprocessing

      图  5  高光谱典型矿物填图结果

      a.蛇纹石填图结果;b.白云母填图结果;c.绿帘石填图结果

      Fig.  5.  Result of hyperspectral mineral mapping

      图  6  高光谱数据油气异常区的综合圈定

      Fig.  6.  Comprehensive oil and gas anomaly area

    • [1] Boardman, J.W., 1998. Post-ATREM Polishing of AVIRIS Apparent Reflectance Data Using EFFORT: A Lesson in Accuracy versus Precision. Pasadena JPL Published, California.
      [2] Clark, R.N., Swayze, G.A., Livo, K.E., et al., 2003. Imaging Spectroscopy: Earth and Planetary Remote Sensing with the USGS Tetracorder and Expert Systems. Journal of Geophysical Research, 1008(E12): 5131. doi: 10.1029/2002JE001847
      [3] Gan, F.P., Wang, R.S., Ma, A.N., et al., 2003. Alteration Extracting Based on Spectral Match Filter(SMF). Journal of Image and Graphics, 8(2): 147-150 (in Chinese with English abstract). doi: 10.11834/jig.20030261
      [4] Gan, F.P., Zhang, Z.G., Wang, R.S., et al., 2005. Spectral Application in Spectral Reconstruction and Validation Based on Hyperspectral Imaging Data. Remote Sensing for Land & Resources, (1): 12-16(in Chinese with English abstract). doi: 10.6046/gtzyyg.2005.01.03
      [5] Goetz, A.F.H., 2009. Three Decades of Hyperspectral Remote Sensing of the Earth: A Personal View. Remote Sensing of Environment, 113: S5-S16. doi: 10.1016/j.rse.2007.12.014
      [6] Hao, A.H., Hu, B.L., Bai, J.G., et al., 2013. Design of Airborne Dual Channel Ultraviolet-Visible Imaging Spectrometer with Large Field of View, Wide Spectrum, and High Resolution. Spectroscopy and Spectral Analysis, 33(12): 3432-3436(in Chinese with English abstract). http://europepmc.org/abstract/med/24611417
      [7] Jimenez, L.O., Morales-Morell, A., Creus, A., 1999. Classification of Hyperdimensional Data Based on Feature and Decision Fusion Approaches Using Projection Pursuit, Majority Voting, and Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1360-1366. doi: 10.1109/36.763300
      [8] Kruse, F.A., 2012. Mapping Surface Mineralogy Using Imaging Spectrometry. Geomorphology, 137(1): 41-56. doi: 10.1016/j.geomorph.2010.09.032
      [9] Li, Q.Q., Chen, X.M., Liu, X., et al., 2013. Quantitative Analysis of Content and Spectrum of Altered Mineral in the Oil and Gas Microseepage Area. Spectroscopy and Spectral Analysis, 33(12): 3318-3320 (in Chinese with English abstract). doi: 10.3964/j.issn.1000-0593(2013)12-3318-03
      [10] Liang, S.N., Gan, F.P., Yan, B.K., et al., 2014. A Study on the Relationship between the Composition and Spectral Feature Parameters in Chlorite. Spectroscopy and Spectral Analysis, 34(7): 1763-1768(in Chinese with English abstract). http://europepmc.org/abstract/med/25269276
      [11] Liu, H.Y., Li, Q.L., Gu, B., et al., 2012. Performance Analysis and Radiometric Correction of Novel Molecular Hyperspectral Imaging System. Spectroscopy and Spectral Analysis, 32(11): 3161-3166(in Chinese with English abstract) doi: 10.3964/j.issn.1000-0593(2012)11-3161-06
      [12] Liu, S.W., Gan, F.P., Yan, B.K., et al., 2006. Application of the Imaging Spectroscopic Technique in Mineral Identification and Mapping. Geology in China, 33(1): 178-186(in Chinese with English abstract). http://www.researchgate.net/publication/286951054_Application_of_the_imaging_spectroscopic_technique_in_mineral_identification_and_mapping
      [13] Pan, C., Du, P.J., Luo, Y., et al., 2009. Decision Tree Classification of Remote Sensing Images Based on Vegetation Indices. Journal of Computer Applications, 29(3): 777-780(in Chinese with English abstract). doi: 10.3724/SP.J.1087.2009.00777
      [14] Schaepman, M.E., Ustin, S.L., Plaza, A.J., et al., 2009. Earth System Science Related Imaging Spectroscopy—An Assessment. Remote Sensing of Environment, (113): S123-S137. doi: 10.1016/j.rse.2009.03.001
      [15] Su, L.H., Li, X.W., Liang, S.L., et al., 2002. Data Frame and Spectral Simulation for Remote Sensing Spectral Data Base. Geo-Information Science, (4): 7-14 (in Chinese with English abstract). doi: 10.3969/j.issn.1560-8999.2002.04.002
      [16] Tang, P.K., Li, Y.L., Li, G.B., et al., 2006. Imaging Spectrometry Remote Sensing Technology and Its Applications in Geology. Mineral Resources and Geology, 20(2): 160-165 (in Chinese with English abstract). doi: 10.3696/j.issn.1001-5663.2006.02.013
      [17] Tong, Q.X., Xue, Y.Q., Zhang, L.F., 2014. Progress in Hyperspectral Remote Sensing Science and Technology in China over the Past Three Decades. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1): 70-91. doi: 10.1109/jstars.2013.2267204
      [18] van der Meer, F.D.V.D., van der Werff, H.M.A.V.D., van Ruitenbeek, F.J.A.V., et al., 2012. Multi- and Hyperspectral Geologic Remote Sensing: A Review. International Journal of Applied Earth Observation and Geoinformation, 14(1): 112-128. doi: 10.1016/j.jag.2011.08.002
      [19] Wang, X.L., Du, P.J., Tan, K., et al., 2010. An Automatic Endmember Extraction Algorithm from Hyperspectral Image. Remote Sensing Information, (4): 8-12 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3177.2010.04.002
      [20] Wang, Y., 2010. Hydrocarbon Microseepage Information Extracting through Remote Sensing Technology in Front Range of Longmenshan. Coal Geology of China, 22(10): 10-16(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT201010006.htm
      [21] Yuan, C.Q., Zhou, J.X., 2010. Application of Satellite Remote Sensing Technology in Oil and Gas Exploration. Marine Origin Petroleum Geology, 15(2): 69-75(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2010.02.009
      [22] Zheng, Y.Q., Yu, B.X., 2002. Overview of Spectrum-Dividing Technologies in Imaging Spectrometers. Journal of Remote Sensing, 6(1): 75-80(in Chinese with English abstract). doi: 10.3321/j.issn:1007-4619.2002.01.014
      [23] 甘甫平, 王润生, 马蔼乃, 等, 2003. 基于光谱匹配滤波的蚀变信息提取. 中国图像图形学报, 8(2): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200302004.htm
      [24] 甘甫平, 张宗贵, 王润生, 等, 2005. 光谱重建与光谱真实性检验中地物光谱的作用. 国土资源遥感, (1): 12-16. doi: 10.3969/j.issn.1001-070X.2005.01.003
      [25] 郝爱花, 胡炳樑, 白加光, 等, 2013. 大视场宽谱段高分辨率分波段机载紫外-可见光成像光谱仪设计. 光谱学与光谱分析, 33(12): 3432-3436. doi: 10.3964/j.issn.1000-0593(2013)12-3432-05
      [26] 李倩倩, 陈小梅, 刘幸, 等, 2013. 油气微渗漏区蚀变矿物含量与光谱之间的定量分析. 光谱学与光谱分析, 33(12): 3318-3320. doi: 10.3964/j.issn.1000-0593(2013)12-3318-03
      [27] 梁树能, 甘甫平, 闫柏琨, 等, 2014. 绿泥石矿物成分与光谱特征关系研究. 光谱学与光谱分析, 34(7): 1763-1768. doi: 10.3964/j.issn.1000-0593(2014)07-1763-06
      [28] 刘洪英, 李庆利, 顾彬, 等, 2012. 新型分子高光谱成像系统性能分析及数据预处理. 光谱学与光谱分析, 32(11): 3161-3166. doi: 10.3964/j.issn.1000-0593(2012)11-3161-06
      [29] 刘圣伟, 甘甫平, 闫柏琨, 等, 2006. 成像光谱技术在典型蚀变矿物识别和填图中的应用. 中国地质, 33(1): 178-186. doi: 10.3969/j.issn.1000-3657.2006.01.020
      [30] 潘琛, 杜培军, 罗艳, 等, 2009. 一种基于植被指数的遥感影像决策树分类方法. 计算机应用, 29(3): 777-780. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY200903044.htm
      [31] 苏理宏, 李小文, 梁顺林, 等, 2002. 典型地物波谱库的数据体系与波谱模拟. 地球信息科学, (4): 7-14. doi: 10.3969/j.issn.1560-8999.2002.04.002
      [32] 唐攀科, 李永丽, 李国斌, 等, 2006. 成像光谱遥感技术及其在地质中的应用. 矿产与地质, 20(2): 160-165. doi: 10.3969/j.issn.1001-5663.2006.02.013
      [33] 王晓玲, 杜培军, 谭琨, 等, 2010. 一种高光谱遥感影像端元自动提取方法. 遥感信息, (4): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201004004.htm
      [34] 王永, 2010. 基于遥感技术的龙门山前山带烃类微渗漏信息提取. 中国煤炭地质, 22(10): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201010006.htm
      [35] 袁崇谦, 周建勋, 2010. 卫星技术在油气勘探中的应用. 海相油气地质, 15(2): 69-75. doi: 10.3969/j.issn.1672-9854.2010.02.009
      [36] 郑玉权, 禹秉熙, 2002. 成像光谱仪分光技术概览. 遥感学报, 6(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200201013.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  3366
    • HTML全文浏览量:  163
    • PDF下载量:  335
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-05-02
    • 刊出日期:  2015-08-01

    目录

      /

      返回文章
      返回