• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    频率域航空电磁系统线圈姿态变化影响及校正方法

    王卫平 曾昭发 吴成平

    王卫平, 曾昭发, 吴成平, 2015. 频率域航空电磁系统线圈姿态变化影响及校正方法. 地球科学, 40(7): 1266-1275. doi: 10.3799/dqkx.2015.106
    引用本文: 王卫平, 曾昭发, 吴成平, 2015. 频率域航空电磁系统线圈姿态变化影响及校正方法. 地球科学, 40(7): 1266-1275. doi: 10.3799/dqkx.2015.106
    Wang Weiping, Zeng Zhaofa, Wu Chengping, 2015. Coil Attitude Influence and Attitude Correction Method for Frequency Domain Airborne Electromagnetic System. Earth Science, 40(7): 1266-1275. doi: 10.3799/dqkx.2015.106
    Citation: Wang Weiping, Zeng Zhaofa, Wu Chengping, 2015. Coil Attitude Influence and Attitude Correction Method for Frequency Domain Airborne Electromagnetic System. Earth Science, 40(7): 1266-1275. doi: 10.3799/dqkx.2015.106

    频率域航空电磁系统线圈姿态变化影响及校正方法

    doi: 10.3799/dqkx.2015.106
    基金项目: 

    国家自然科学基金项目 41174097

    国家矿保工程"高精度航空物探方法研究"项目 1212011087010

    详细信息
      作者简介:

      王卫平(1963-), 男, 硕士, 教授级高级工程师, 主要从事航空物探成果解释和方法研究工作以及航空电磁法方法研究和成果解释工作.E-mail: 911733417@qq.com

    • 中图分类号: P631

    Coil Attitude Influence and Attitude Correction Method for Frequency Domain Airborne Electromagnetic System

    • 摘要: 频率域航空电磁系统线圈姿态变化影响及校正是一项探索性很强的开拓性工作, 目前国内尚无成熟经验可循.吊舱式直升机频率域航空电磁法线圈安装在吊舱内, 探头姿态变化相对较大, 因此姿态校正提高了其数据处理精度, 对提高航空电磁法数据处理水平具有重要意义.为了消除吊舱式直升机频率域航空电磁系统因收发线圈姿态发生变化, 而导致的电磁探头接收地下地质体电磁响应数据产生的误差, 采用三维频率域有限差分方法模拟计算频率域航空电磁系统的电磁响应, 分析了不同频率、不同收发线圈姿态变化类型对水平共面(HCP, 全称horizontal co-plane)和垂直同轴(VCX, 全称vertical coaxial)线圈装置的电磁响应影响.计算结果表明: 垂直同轴线圈装置因姿态角度变化引起的测量误差比值远大于水平共面装置, 而且频率越高, 受探头姿态角度变化的影响越大.垂直同轴装置主要受俯冲姿态变化的影响, 水平共面装置受摇摆和俯冲这2种姿态变化的影响.在此基础上, 根据姿态误差几何校正方法进行了电磁数据校正, 有效地去除了因线圈姿态变化造成的误差响应.

       

    • 图  1  线圈姿态变化

      φyφpφr分别表示偏航、俯仰、摇摆3种姿态变化角度

      Fig.  1.  Coils attitude changes

      图  2  Yee非均匀网格剖分示意

      Fig.  2.  Non-uniform Yee grid

      图  3  HEM计算模型示意

      Fig.  3.  The 3D model of HEM calculation

      图  4  不同埋深目标体电磁响应信号

      Fig.  4.  The electromagnetic response of components with different depths

      图  5  三维频率域有限差分计算结果对比曲线

      Fig.  5.  The comparison of calculation results for 3D frequency domain finite difference method

      图  6  线圈姿态变化影响计算模型

      Fig.  6.  The calculation model of coil attitude changes

      图  7  不同角度VCX装置俯冲姿态变化Hx二次场响应

      Fig.  7.  The normalized secondary field of Hx in pitch with different angles (VCX)

      图  8  不同角度HCP装置俯冲姿态变化Hz二次场响应

      a.摇摆姿态;b.俯冲姿态

      Fig.  8.  The normalized secondary field of Hz in HCP with different angles

      图  9  不同角度不同频率条件下2种装置姿态变化电磁响应归一化比值对比

      a.水平共面装置实分量; b.水平共面装置虚分量; c.垂直同轴装置实分量

      Fig.  9.  The comparison of normalized secondary field response in VCX and HCP coil with different frequencies

      图  10  连续角度姿态变化模型

      Fig.  10.  The calculation model of pitch along fly line

      图  11  水平共面装置2种姿态变化Hz分量响应信号

      Fig.  11.  The secondary field of Hz in HCP with pitch and roll

      图  12  垂直同轴装置俯冲姿态变化Hx分量响应信号及校正结果

      Fig.  12.  The secondary field of Hx in VCX with pitch and calibration result

      图  13  模拟连续探头姿态角度变化曲线

      Fig.  13.  The curve of continuous angles for simulated sensor attitude variation

      图  14  北京密云红光铁矿地区10号线HCP装置实虚分量探头姿态校正结果对比

      Fig.  14.  Comparion map of sensor attitude correction for HCP system of Line 10 in Miyun Hongguang iron ore, Beijing

      表  1  不同装置、不同角度、不同频率归一化二次场电磁响应

      Table  1.   The normalized secondary field response in VCX and HCP coil with different angles and frequencies

      角度变化 水平共面(HCP),摇摆姿态 水平共面(HCP),俯冲姿态 垂直同轴(VCX),摇摆姿态
      Hz虚分量/Hz实分量 Hz虚分量/Hz实分量 Hx虚分量/Hx实分量
      930Hz 4650Hz 23250Hz 930Hz 4650Hz 23250Hz 870Hz 4350Hz 21750Hz
      11.7610 3.0848 1.4069 12.633 2.8473 1.2554 4.8085 1.8657 1.2596
      11.7460 3.0817 1.4045 12.619 2.8440 1.2536 4.7382 1.8305 1.2360
      11.7370 3.0833 1.4015 12.611 2.8398 1.2509 4.6944 1.8085 1.2209
      12° 11.7240 3.0825 1.3989 12.600 2.8313 1.2451 4.6220 1.7773 1.1991
      16° 11.7110 3.0817 1.3970 12.592 2.8194 1.2368 4.5662 1.7431 1.1747
      20° 11.6970 3.0809 1.3946 12.585 2.8039 1.2258 4.4921 1.7047 1.1465
      下载: 导出CSV
    • [1] Aaron, D., James, M., Greg, H., 2009. Predictions of Bird Swing from GPS Coordinates. Geophysics, 74(6): 119-126. doi: 10.1190/1.3237143
      [2] Chen, H., Deng, J.Z., Tan, H.D., et al., 2011. Study on Divergence Correction Method in Three-Dimensional Magnetotelluric Modeling with Staggered-Grid Finite Difference Method. Chinese Journal of Geophysics, 54(6): 1649-1659(in Chinese with English abstract). doi: 10.3969/j.issn.001-5733.2011.06.025
      [3] Davis, A.C., Macnae, J., Robb, T., 2006. Pendulum Motion in Airborne HEM Systems. Exploration Geophysics, 37(4): 355-362. doi: 10.1071/EG06355
      [4] Fitterman, D.V., 1998. Sources of Calibration Errors in Helicopter EM Data. Exploration Geophysics, 29(1-2): 65-70. doi: 10.1071/EG998065
      [5] Fitterman, D.V., Yin C.C., 2004. Effect of Bird Maneuver on Frequency-Domain Helicopter EM Response. Geophysics, 69(5): 1203-1215. doi: 10.1190/1.1801937
      [6] Fountain, D., 1998. Airborne Electromagnetic System—50 Years of Development. Exploration Geophysics, 29(1-2): 1-11. doi: 10.1071/EG998001
      [7] Fraser, D.C., 1978. Resistivity Mapping with an Airborne Multi-Coil Electromagnetic System. Geophysics, 43(1): 144-172. doi: 10.1190/1.1440817
      [8] Haber, E., Ascher, U.M., Aruliah, D.A., et al., 2000. Fast Simulation of 3D Electromagnetic Problems Using Potentials. Journal of Computational Physics, 163: 150-171. doi: 10.1190/1.3063722
      [9] Hefford, S.W., Smith, R.S., Samson, C., 2006. Quantifying the Effects that Changes in Transmitter-Receiver Geometry Have on the Capability of an Airborne Electromagnetic Survey System to Detect Good Conductors. Exploration and Mining Geology, 15: 43-52. doi: 10.2113/gsemg.15.1-2.43
      [10] Holladay, J.S., Lo, B., Prinsenberg, S.J., 1997. Bird Orientation Effects in Quantitative Airborne Eelectromagnetic Interpretation of Pack Ice Thickness Sounding. IEEE Conference Proceedings, Marine Technology Society, 1-2: 1114-1119. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=624148&filter%3DAND(p_IS_Number%3A13571)
      [11] Huang, H.P., Fraser, D.C., 2001. Maping of the Resistivity, Susceptibility, and Permeability of the Earth Using a Helicopter-Borne Electromagnetic System. Geophysics, 66(1): 148-157. doi: 10.1190/1.1444889
      [12] Huang, H.P., Wang, W.Z., 1990. Inversion of Time-Domain Airborne Electromagnetic Data. Acta Geophysica Sinica, 33(1): 87-97(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199001012.htm
      [13] Huang, L.P., Dai, S.K., 2002. Finite Element Calculation Method of 3D Electromagnetic Field under Complex Condition. Earth Science—Journal of China University of Geosciences, 27(6): 775-779. doi: 10.3321/j.issn:1000-2383.2002.06.022
      [14] Ji, Y.J., Lin, J., Guan, S.S., et al., 2010. Theoretical Study of Concentric Loop Coils Attitude Correction in Helicopter-Borne TEM. Chinese Journal of Geophysics, 53(1): 171-176(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2010.01.019
      [15] Lei, D., Hu, X.Y., Zhang, S.F., 2006. Develeopment Status Quo of Airborne Eletromagnetic. Contributions to Geology and Mineral Resources Research, 21(1): 40-44, 53 (in Chinese with English abstract).
      [16] Li, W.J., 2008. Data Processing of Frequency Domain Airborne Electromagnetic Survey(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [17] Li, X.K., 2011. An MPI Based Parallel Calculation Investigation on Two Dimensional Finite Element Modelling of AEM(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [18] Liu, G., Becker, A., 1992. Evaluation of Terrain Effects in AEM Surveys Using the Boundary Element Method. Geophysics, 57(2): 272-278. doi: 10.1190/1.1443240
      [19] Mackie, R. L, Madden, T.R., Wannamaker. P, 1993. . 3-D Magnetotelluric Modeling Using Difference Equations—Theory and Comparisons to Integral Equation Solutions. Geophysics, 58(2): 215-226. doi: 10.1190/1.1443407
      [20] Mackie, R.L., Smith, J.T., Madden, T.R., 1994. Three-Dimensional Electromagnetic Modeling Using Finite Difference Equations: The Magnetotelluric Example. Radio Science, 29(4): 923-935. doi: 10.1029/94RS00326
      [21] Newman, G.A., Alumbaugh, D.L., 1995. Frequency-Domain Modelling of Airborne Electromagnetic Responses Using Staggered Finite Differences. Geophys. Prosp. , 43(8): 1021-1042. doi: 10.1111/j.1365-2478.1995.tb00294.x
      [22] Roy, D.P., Devereux, B., Grainger, B., et al., 1998. Parametric Geometric Correction of Airborne the Matic Mapper Imagery. International Journal Remote Sensing, 18(9): 1865-1887. doi: org/10.1080/014311697217927
      [23] Ruan, B.Y., Xu, S.Z., Xu, Z.F., 2007. Modeling the 3D Terrain Effect on MT by the Boundary Element Method. Earth Science—Journal of China University of Geosciences, 32(1): 130-134. doi: 10.3321/j.issn:1000-2383.2007.01.020
      [24] Sasaki, Y., Nakazato, H., 2003. Topographic Effects in Frequency-Domain Helicopter-Borne Electromagnetics. Exploration Geophysics, 34(1-2): 24-28. doi: 10.1071/EG03024
      [25] Shen, J.S., 2003. Modeling of 3-D Electromagnetic Responses in Frequency Domain by Using Staggered-Grid Finite Difference Method. Chinese Journal of Geophysics, 46(2): 281-289(in Chinese with English abstract). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGSY200309001073.htm
      [26] Siemon, B., Christiansen, A.V., Auken, E., 2009. A Review of Helicopter-Borne Electromagnetic Methods for Groundwater Exploration. Near Surface Geophysics, 7(5-6): 629-646. doi: 10.3997/1873-0604.2009043
      [27] Siemon, B., Steuer, A., Ullmann, A., et al., 2011. Application of Frequency-Domain Helicopter-Borne Electromagnetics for Groundwater Exploration in Urban Areas. Physics and Chemistry of the Earth, 36(16): 1373-1385. doi: 10.1016/j.pce.2011.02.006
      [28] Smith J.T., Booker, J.R., 1991. Rapid Inversion of Two and Three Dimensional Magnetotelluric Data. Journal of Geophysical Research-Atmospheres, 96(B3): 3905-3922. doi: 10.1029/90JB02416
      [29] Son, K.H., 1985. Interpretation of Electromagnetic Dipole-Dipole Frequency Sounding Data over a Vertically Stratified Earth (Dissertation). North Carolina State University, Raleigh, 149.
      [30] Tan, H.D., Tuo, D., Lin, C.H., 2006. The Parallel 3D Magnetotelluric Forward Modeling Algorithm. Applied Geophysics, 3(4): 197-202. doi: 10.1007/s11770-006-4001-5
      [31] Tan, H.D., Yu, Q.F., Booker, J., et al., 2003. Magnetotelluric Three-Dimensional Modeling Using the Staggered-Grid Finite Difference Method. Chinese Journal of Geophysics, 46(5): 705-711(in Chinese with English abstract). doi: 10.1002/cjg2.420/abstract
      [32] Wang, S.L., Wang, Y.Z., Sui, Y.Y., et al., 2011. A Bird Calibration Device of Helicopter-Borne TEM with Concentric Bucking Loop. Chinese Journal of Geophysics, 54(9): 2397-2406(in Chinese with English abstract). http://forest.ckcest.cn/d/hxwx/AVkJXWJv49MUqoKBNcWr.html
      [33] Wang, W.P., Wang, S.T., 2003. Electromagnetic Response Character of Helicopter Frequency Domain EM System above Uniform Half Space and Its Prospecting Depth. Acta Geoscientia Sinica, 24(3): 285-288(in Chinese with English abstract). http://www.oalib.com/paper/1558943
      [34] Wang, W.P., Wu, C.P., 2010. Current Situation and Prospect of Research about FEM Software. Chinese Journal of Engineering Geophysics, 7(3): 333-338(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7940.2010.03.013
      [35] Wang, W.P., Zhou, X.H., Wang, S.T., et al., 2008. The Performance and Applied Effect of Towed Bird Helicopter Frequency Domain Electromagnetic System. Progress in Geophysics, 23(3): 942- 947(in Chinese with English abstract). http://www.oalib.com/paper/1701617
      [36] Yee, K.S., 1966. Numerical Solution of Initial Boundary Problems Involving Maxwell's Equations in Isotropic Media. IEEE Transaction on Antennas Propagation, AP-14: 302-309. http://www.emeraldinsight.com/servlet/linkout?suffix=b4&dbid=16&doi=10.1108%2FCOMPEL-10-2012-0272&key=10.1109%2FTAP.1966.1138693
      [37] Yin, C.C., Fraser, D C., 2004. Attitude Corrections of Helicopter EM Data Using a Superposed Dipole Model. Geophysics, 69(5): 431-438. doi: 10.1190/1.1707063
      [38] Zhang, Q.Z., Liu, J.Y., Wang, L.W., 2007. On Calibration of Magnetic Field Distortion for Electromagnetic Trackers. Journal of Nanjing University of Aeronautics & Astronautics, 39(6): 711-715(in Chinese with English abstract). http://www.researchgate.net/publication/285930802_On_calibration_of_magnetic_field_distortion_for_electromagnetic_trackers
      [39] Zhou, D.Q., 2006. Study on Practicable Methods for the Interpretation of FAEM Data(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      [40] Zhou, D.Q., Tan, L., Tan, H.D., et al., 2010. Inversion of Frequency Domain Helicopter-Borne Electromagnetic Data with Marquardt's Method. Chinese Journal of Geophysics, 53(2): 421-427(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2010.02.020
      [41] 陈辉, 邓居智, 谭捍东, 等, 2011. 大地电磁三维交错网格有限差分数值模拟中的散度校正方法研究. 地球物理学报, 54(6): 1649-1659. doi: 10.3969/j.issn.0001-5733.2011.06.025
      [42] 黄皓平, 王维中, 1990. 时间域航空电磁数据的反演. 地球物理学报, 33(1): 87-97. doi: 10.3321/j.issn:0001-5733.1990.01.010
      [43] 黄临平, 戴世坤, 2002. 条件下3D电磁场有限元计算方法. 地球科学——中国地质大学学报, 27(6): 775-779. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200206022.htm
      [44] 嵇艳鞠, 林君, 关珊珊, 等, 2010. 直升机航空TEM中心回线线圈姿态校正的理论研究. 地球物理学报, 53(1): 171-176. doi: 10.3969/j.issn.0001-5733.2010.01.019
      [45] 雷栋, 胡祥云, 张素芳, 2006. 航空电磁法的发展现状. 地质找矿论丛, 21(1): 40-44, 53. doi: 10.3969/j.issn.1001-1412.2006.01.009
      [46] 李文杰, 2008. 频率域航空电磁数据处理技术研究(博士学位论文). 北京: 中国地质大学.
      [47] 李小康, 2011. 基于MPI的频率域航空电磁法有限元二维正演并行计算研究(博士学位论文). 北京: 中国地质大学.
      [48] 阮百尧, 徐世浙, 徐志锋, 2007. 三维地形大地电磁场的边界元模拟方法. 地球科学——中国地质大学学报, 32(1): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701019.htm
      [49] 沈金松, 2003. 用交错网格有限差分法计算三维频率域电磁响应. 地球物理学报, 46(2): 281-289. doi: 10.3321/j.issn:0001-5733.2003.02.024
      [50] 谭捍东, 余钦范, Booker, J., 等, 2003. 大地电磁法三维交错采样有限差分数值模拟. 地球物理学报, (5): 705-711. doi: 10.3321/j.issn:0001-5733.2003.05.019
      [51] 王世隆, 王言章, 随阳轶, 等, 2011. 同心补偿式直升机时间域航空电磁法吊舱校准装置研究. 地球物理学报, 54(9): 2397-2406. doi: 10.3969/j.issn.0001-5733.2011.09.023
      [52] 王卫平, 王守坦, 2003. 直升机频率域航空电磁系统在均匀半空间上方的电磁响应特征与探测深度. 地球学报, 24(3): 285- 288. doi: 10.3321/j.issn:1006-3021.2003.03.015
      [53] 王卫平, 吴成平, 2010. 频率域航空电磁法软件研究现状与发展趋势. 工程地球物理学报, 7(3): 333-338. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201003015.htm
      [54] 王卫平, 周锡华, 王守坦, 等, 2008. 吊舱式直升机频率域电磁系统性能及应用效果. 地球物理学进展, 23(3): 942- 947. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200803043.htm
      [55] 张求知, 刘建业, 王立伟, 2007. 电磁式跟踪器磁场畸变的姿态校正技术. 南京: 南京航空航天大学学报, 39(6): 711-715. doi: 10.3969/j.issn.1005-2615.2007.06.004
      [56] 周道卿, 2006. 频率域航空电磁资料实用化处理解释系统研究(博士学位论文). 北京: 中国地质大学.
      [57] 周道卿, 谭林, 谭捍东, 等, 2010. 频率域吊舱式直升机航空电磁资料的马奎特反演. 地球物理学报, 53(2): 421-427. doi: 10.3969/j.issn.0001-5733.2010.02.020
    • 加载中
    图(14) / 表(1)
    计量
    • 文章访问数:  2826
    • HTML全文浏览量:  226
    • PDF下载量:  409
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-08-05
    • 刊出日期:  2015-07-15

    目录

      /

      返回文章
      返回