• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于相空间重构和小波分析-粒子群向量机的滑坡地下水位预测

    黄发明 殷坤龙 张桂荣 周春梅 张俊

    黄发明, 殷坤龙, 张桂荣, 周春梅, 张俊, 2015. 基于相空间重构和小波分析-粒子群向量机的滑坡地下水位预测. 地球科学, 40(7): 1254-1265. doi: 10.3799/dqkx.2015.105
    引用本文: 黄发明, 殷坤龙, 张桂荣, 周春梅, 张俊, 2015. 基于相空间重构和小波分析-粒子群向量机的滑坡地下水位预测. 地球科学, 40(7): 1254-1265. doi: 10.3799/dqkx.2015.105
    Huang Faming, Yin Kunlong, Zhang Guirong, Zhou Chunmei, Zhang Jun, 2015. Landslide Groundwater Level Time Series Prediction Based on Phase Space Reconstruction and Wavelet Analysis-Support Vector Machine Optimized by PSO Algorithm. Earth Science, 40(7): 1254-1265. doi: 10.3799/dqkx.2015.105
    Citation: Huang Faming, Yin Kunlong, Zhang Guirong, Zhou Chunmei, Zhang Jun, 2015. Landslide Groundwater Level Time Series Prediction Based on Phase Space Reconstruction and Wavelet Analysis-Support Vector Machine Optimized by PSO Algorithm. Earth Science, 40(7): 1254-1265. doi: 10.3799/dqkx.2015.105

    基于相空间重构和小波分析-粒子群向量机的滑坡地下水位预测

    doi: 10.3799/dqkx.2015.105
    基金项目: 

    中国地质调查局县域地质灾害风险管理研究项目 1212011220173

    国家自然科学基金项目 201271031415

    国家自然科学基金项目 41240023

    国家自然科学基金项目 41302230

    武汉市晨光计划项目 201271031415

    详细信息
      作者简介:

      黄发明(1988-), 男, 博士, 主要研究方向为滑坡灾害预测预报.E-mail: huang1503518@sina.cn

      通讯作者:

      殷坤龙, E-mail: yinklong@163.com

    • 中图分类号: P694

    Landslide Groundwater Level Time Series Prediction Based on Phase Space Reconstruction and Wavelet Analysis-Support Vector Machine Optimized by PSO Algorithm

    • 摘要: 预测滑坡地下水位的动态演变过程对滑坡稳定性分析具有重要意义, 三峡库区库岸滑坡地下水位时间序列受多种因素影响, 呈现出高度非线性非平稳的特征.为对其进行预测, 提出一种基于相空间重构的小波分析-粒子群优化支持向量机(wavelet analysis-support vector machine, 简称WA-PSVM)模型.该模型引入小波变换法对地下水位序列进行时频分解, 将非平稳的地下水位序列转变为多个不同分辨率尺度下的较平稳的地下水位子序列; 然后重构各子序列的相空间, 再利用PSVM(全称support vector machine)模型对地下水位各子序列进行预测, 最后将各子序列预测值相加得到最终预测结果.以三峡库区三舟溪滑坡前缘STK-1水文孔日平均地下水位序列为例, 首先分析滑坡前缘地下水位变化的影响因素, 再将WA-PSVM模型应用于地下水位预测, 并与单独PSVM模型和小波分析-BP网络模型(wavelet analysis-back propagation, 简称WA-BP)作对比.结果表明: 滑坡前缘地下水位受降雨和库水位影响较大, 利用WA-PSVM模型对STK-1水文孔地下水位进行预测的均方根误差为0.073m、拟合优度为0.966, WA-PSVM模型预测精度高于单独PSVM模型和WA-BP模型.WA-PSVM模型解决了地下水位序列非线性非平稳的问题, 在不考虑影响因素的情况下能获得满意的预测效果, 具有较高的建模效率和较强的实用性.

       

    • 图  1  地下水位预测WA-PSVM模型建模流程

      Fig.  1.  Flowchart of WA-PSVM model for groundwater level prediction

      图  2  粒子群优化支持向量机流程

      Fig.  2.  Flowchart of PSVM model

      图  3  三舟溪滑坡地下水位监测点布置

      Fig.  3.  Locations of groundwater monitoring points of the Sanzhouxi landslide

      图  4  三舟溪滑坡I-I'工程地质剖面

      Fig.  4.  I-I' cross-section of the Sanzhouxi landslide

      图  5  STK-1水文孔地下水位值与降雨、库水位相关性分析

      Fig.  5.  Correlation analysis between STK-1 groundwater level and rainfall, reservoir water level

      图  6  STK-1水文孔小波分解后的各个子序列

      Fig.  6.  Wavelet decomposition of STK-1 groundwater series

      图  7  子序列a4和d1, d2, d3, d4预测值

      Fig.  7.  Predicted values of each frequency series a4 and d1, d2, d3, d4

      图  8  WA-PSVM模型、WA-BP模型和单独PSVM模型滑坡STK-1地下水位一步预测结果对比

      Fig.  8.  Final prediction results comparison of WA-PSVM model, WA-BP model and single PSVM model

      表  1  WA-PSVM模型、WA-BP模型和单独PSVM模型的输入输出变量

      Table  1.   Input variables and output variables for WA-PSVM, WA-BP and single PSVM model

      序列 输出变量 输入变量
      原始序列 (Zi) (Zi-1, Zi-2Zi-3)
      a4 (a4i) (a4i-1, a4i-2a4i-3)
      d1 (d1i) (d1i-1, d1i-2d1i-3d1i-4d1i-5d1i-6d1i-7)
      d2 (d2i) (d2i-1, d2i-2d2i-3d2i-4d2i-5d2i-6)
      d3 (d3i) (d3i-1, d3i-2d3i-3d3i-4)
      d4 (d4i) (d4i-1d4i-2d4i-3d4i-4)
      下载: 导出CSV

      表  2  SVM模型对原始序列和各个子序列进行预测时的最佳参数组合

      Table  2.   Parameter combinations of SVM model for original groundwater level time series and each component

      序列 SVM模型参数组合
      原始序列 c=1 047.85,ε=0.012,φ=0.173
      a4 c=1 446.33,ε=0.011,φ=0.187
      d1 c=2 477.26,ε=0.078,φ=0.092
      d2 c=1 764.97,ε=0.009,φ=0.136
      d3 c=869.33,ε=0.012,φ=0.045
      d4 c=2 879.52,ε=0.011,φ=0.038
      下载: 导出CSV

      表  3  STK-1地下水位不同模型预测结果对比

      Table  3.   Comparison of different models for one day ahead forecasting of STK-1 groundwater level series

      模型 RMSE(m) R2
      WA-PSVM 0.073 0.966
      WA-BP 0.112 0.931
      单独PSVM 0.216 0.741
      下载: 导出CSV
    • [1] An, X., Jiang, D., Liu, C., et al., 2011. Wind Farm Power Prediction Based on Wavelet Decomposition and Chaotic Time Series. Expert Systems with Applications, 38(9): 11280-11285. doi: 10.1016/j.eswa.2011.02.176
      [2] Cui, W.Z., Zhu, C.C., Bao, W.X., et al., 2004. Prediction of the Chaotic Time Series Using Support Vector Machines. Acta Physica Sinica, 53(10): 3303-3310 (in Chinese with English abstract). doi: 10.7498/aps.53.3303
      [3] Gu, W.C., Chai, B.R., Teng, Y.P., 2014. Research on Support Vector Machine Based on Particle Swarm Optimization. Transactions of Beijing Institute of Technology, 34(7): 705-709(in Chinese with English abstract). http://www.researchgate.net/publication/292867417_Research_on_support_vector_machine_based_on_particle_swarm_optimization
      [4] Han, M., 2007. Prediction Theory and Method of Chaotic Time Series. China Water Power Press, Beijing, 28-30 (in Chinese).
      [5] Huang, F.M., Tian, Y.G., 2014. WA-VOLTERRA Coupling Model Based on Chaos Theory for Monthly Precipitation Forecasting. Earth Science—Journal of China University of Geosciences, 39(3): 368-374(in Chinese with English abstract). doi: 10.3799/dqkx.2014.035
      [6] Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. In: Proceedings of the 4th IEEE International Conference on Neural Networks. IEEE Service Center, Piscataway, 1942 -1948.
      [7] Li, C.D., Tang, H.M., Hu, B., et al., 2008. Research on Application of Wavelet Analysis and RBF Neural Network to Prediction of Foundation Settlement. Rock and Soil Mechanics, 29(7): 1917-1922(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200807040.htm
      [8] Li, C.D., Tang, H.M., Hu, X.L., et al., 2009. Landslide Prediction Based on Wavelet Analysis and Cusp Catastrophe. Journal of Earth Science, 20(6): 971-977. doi: 10.1007/s12583-009-0082-4
      [9] Liu, H., Tian, H.Q., Chen, C., et al., 2011. Short-Term Forecasting Optimization Algorithm for Unsteady Wind Speed Signal Based on Wavelet Analysis Method and Neutral Networks Method. Journal of Central South University (Science and Technology), 42(9): 2704-2711(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGD201109029.htm
      [10] Liu, X.X., Xia, Y.Y., Zhang, X.S., et al., 2005. Effects of Drawdown of Reservoir Water Level on Landslide Stability. Chinese Journal of Rock Mechanics and Engineering, 24(8): 1439-1444(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSLX200508034.htm
      [11] Luo, H.M., Tang, H.M., Zhang, G.C., et al., 2008. The Influence of Water Level Fluctuation on the Bank Landslide Stability. Earth Science—Journal of China University of Geosciences, 33(5): 687-692(in Chinese with English abstract). doi: 10.3799/dqkx.2008.084
      [12] Maiti, S., Tiwari, R.K., 2014. A Comparative Study of Artificial Neural Networks, Bayesian Neural Networks and Adaptive Neuro-Fuzzy Inference System in Groundwater Level Prediction. Environmental Earth Sciences, 71(7): 3147-3160. doi: 10.1007/s12665-013-2702-7
      [13] Peng, L., Niu, R.Q., Wu, T., 2013. Time Series Analysis and Support Vector Machine for Landslide Displacement Prediction. Journal of Zhejiang University(Engineering Science), 47(9): 1672-1679(in Chinese with English abstract).
      [14] Peng, L., Niu, R.Q., Ye, R.Q., et al., 2012. Prediction of Ground Water Level in Landslides Based on Genetic-Support Vector Machine. Journal of Central South University (Science and Technology), 43(12): 4788-4795 (in Chinese with English abstract). http://www.cqvip.com/QK/90745B/201212/44479949.html
      [15] Qiu, J.P., Xing, J., Jiang, A.N., et al., 2012. Supersonic Forecast of the Strength of Ore and Rock Based on Particle Swarm Support Vector Machine. Journal of Northeastern University(Natural Science), 33(5): 731-734(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBDX201205031.htm
      [16] Ren, J., Huang, D.D., Li, Z.N., 2005. Character Recognition Based on Support Vector Machines and Wavelet. Journal of Zhejiang University(Engineering Science), 39(12): 2016-2020(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZDZC200512037.htm
      [17] Ren, L., Xiang, X.Y., Ni, J.J., 2011. Forecast Modeling of Monthly Runoff with Adaptive Neural Fuzzy Inference System and Wavelet Analysis. Journal of Hydrologic Engineering, 18(9): 1133-1139. http://www.researchgate.net/publication/273748128_Forecast_Modeling_of_Monthly_Runoff_with_Adaptive_Neural_Fuzzy_Inference_System_and_Wavelet_Analysis
      [18] Siek, M., Solomatine, D.P., 2010. Nonlinear Chaotic Model for Predicting Storm Surges. Nonlinear Processes in Geophysics, 17(5): 405-420. doi: 10.5194/npg-17-405-2010
      [19] Tang, M., Ma, G.W., Xu, G., 2007. Analysis and Forecasting SMP Using Wavelet Transform. Journal of Sichuan University(Engineering Science Edition), 39(4): 12-15 (in Chinese with English abstract).
      [20] Wang, Z.L., Sun, H.Y., Liu, Y.L., et al., 2011. Time Series Analysis about Groundwater Level in Slope and Rainfall. Journal of Zhejiang University(Engineering Science), 45(7): 1031-1037(in Chinese with English abstract). doi: 10.3785/j.issn.1008-973X.2011.07.027
      [21] Wolf, A., Swift, J.B., Swinney, H.L., 1986. Determining Lyapunov Exponents from Time Series. Physica D, 16(2): 285-371.
      [22] Yang, Z.P., Lu, W.X., Li, P., 2005. Application of Time Series Model to Predict Groundwater Regime. Journal of Hydraulic Engineerinmg, 32(12): 1475-1479 (in Chinese with English abstract). doi: 10.3321/j.issn:0559-9350.2005.12.013
      [23] Zhang, S.Q., Jia, J., Gao, M., 2010. Study on the Parameters Determination for Reconstructing Phase-Space in Chaos Time Series. Acta Physica Sinica, 59(3): 1576-1582 (in Chinese with English abstract). doi: 10.7498/aps.59.1576
      [24] Zhou, C.Y., Zhang, L., Huang, X.Y., 2005. Classification of Rocks Surrounding Tunnel Based on Improved BP Network Algorithm. Earth Science—Journal of China University of Geosciences, 30(4): 480-486(in Chinese with English abstract). http://www.researchgate.net/publication/289965821_Classification_of_rocks_surrounding_tunnel_based_on_improved_BP_network_algorithm
      [25] 崔万照, 朱长纯, 保文星, 等, 2004. 混沌时间序列的支持向量机预测. 物理学报, 53(10): 3303-3310. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200410011.htm
      [26] 谷文成, 柴宝仁, 滕艳平, 2014. 基于粒子群优化算法的支持向量机研究. 北京理工大学学报, 34(7): 705-709. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201407010.htm
      [27] 韩敏, 2007. 混沌时间序列预测理论与方法. 北京: 中国水利水电出版社, 28-30.
      [28] 黄发明, 田玉刚, 2014. 混沌序列WA-VOLTERRA耦合模型在月降水量预测中的应用. 地球科学——中国地质大学学报, 39(3): 368-374. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201403014.htm
      [29] 李长冬, 唐辉明, 胡斌, 等, 2008. 小波分析和RBF神经网络在地基沉降预测中的应用研究. 岩土力学, 29(7): 1917-1922. doi: 10.3969/j.issn.1000-7598.2008.07.035
      [30] 刘辉, 田红旗, 陈超, 等, 2011. 基于小波分析法与神经网络法的非平稳风速信号短期预测优化算法. 中南大学学报(自然科学版), 42(9): 2704-2711. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109029.htm
      [31] 刘新喜, 夏元友, 张显书, 等, 2005. 库水位下降对滑坡稳定性的影响. 岩石力学与工程学报, 24(8): 1439-1444. doi: 10.3321/j.issn:1000-6915.2005.08.027
      [32] 罗红明, 唐辉明, 章广成, 等, 2008. 库水位涨落对库岸滑坡稳定性的影响. 地球科学——中国地质大学学报, 33(5): 687-692. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805015.htm
      [33] 彭令, 牛瑞卿, 吴婷, 2013. 时间序列分析与支持向量机的滑坡位移预测. 浙江大学学报(工学版), 47(9): 1672-1679. doi: 10.3785/j.issn.1008-973X.2013.09.024
      [34] 彭令, 牛瑞卿, 叶润清, 等, 2012. 基于进化支持向量机的滑坡地下水位动态预测. 中南大学学报(自然科学版), 43(12): 4788-4795. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201212031.htm
      [35] 邱景平, 邢军, 姜谙男, 等, 2012. 基于粒子群支持向量机的矿岩强度指标的超声预测. 东北大学学报(自然科学版), 33(5): 731-734. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201205031.htm
      [36] 任俊, 黄丹丹, 李志能, 2005. 基于支撑向量机和小波的字符识别. 浙江大学学报(工学版), 39(12): 2016-2020. doi: 10.3785/j.issn.1008-973X.2005.12.038
      [37] 唐明, 马光文, 徐刚, 2007. 基于小波变换的系统边际电价分析与预测. 四川大学学报(工程科学版), 39(4): 12-15. doi: 10.3969/j.issn.1009-3087.2007.04.003
      [38] 王智磊, 孙红月, 刘永莉, 等, 2011. 降雨与边坡地下水位关系的时间序列分析. 浙江大学学报(工学版), 45(7): 1031-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201107028.htm
      [39] 杨忠平, 卢文喜, 李平, 2005. 时间序列模型在吉林西部地下水动态变化预测中的应用. 水利学报, 32(12): 1475-1479. doi: 10.3321/j.issn:0559-9350.2005.12.013
      [40] 张淑清, 贾健, 高敏, 2010. 混沌时间序列重构相空间参数选取研究. 物理学报, 59(3): 1576-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201003025.htm
      [41] 周翠英, 张亮, 黄显艺, 2005. 基于改进BP网络算法的隧洞围岩分类. 地球科学——中国地质大学学报, 30(4): 480-486. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200504014.htm
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  3866
    • HTML全文浏览量:  143
    • PDF下载量:  482
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-11-18
    • 刊出日期:  2015-07-15

    目录

      /

      返回文章
      返回