• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    承压井含水层孔隙度与固体骨架和水的体积压缩系数之间的关系

    丁风和 韩晓雷 哈媛媛 戴勇 梁莹

    丁风和, 韩晓雷, 哈媛媛, 戴勇, 梁莹, 2015. 承压井含水层孔隙度与固体骨架和水的体积压缩系数之间的关系. 地球科学, 40(7): 1248-1253. doi: 10.3799/dqkx.2015.104
    引用本文: 丁风和, 韩晓雷, 哈媛媛, 戴勇, 梁莹, 2015. 承压井含水层孔隙度与固体骨架和水的体积压缩系数之间的关系. 地球科学, 40(7): 1248-1253. doi: 10.3799/dqkx.2015.104
    Ding Fenghe, Han Xiaolei, Ha Yuanyuan, Dai Yong, Liang Yin, 2015. Relationship of Porosity and Volume Compression Coefficient of Solid Skeleton and Water in Artesian Well Aquifer. Earth Science, 40(7): 1248-1253. doi: 10.3799/dqkx.2015.104
    Citation: Ding Fenghe, Han Xiaolei, Ha Yuanyuan, Dai Yong, Liang Yin, 2015. Relationship of Porosity and Volume Compression Coefficient of Solid Skeleton and Water in Artesian Well Aquifer. Earth Science, 40(7): 1248-1253. doi: 10.3799/dqkx.2015.104

    承压井含水层孔隙度与固体骨架和水的体积压缩系数之间的关系

    doi: 10.3799/dqkx.2015.104
    基金项目: 

    2014年度震情跟踪合同制定向重点工作任务资助项目 2014010301

    详细信息
      作者简介:

      丁风和(1977-), 男, 硕士, 高级工程师, 主要从事地震地下流体方面研究.E-mail: dingfenghe@126.com

    • 中图分类号: P349

    Relationship of Porosity and Volume Compression Coefficient of Solid Skeleton and Water in Artesian Well Aquifer

    • 摘要: 孔隙度和岩石压缩系数等方面的研究在评价油藏弹性产能和动态地质储量方面有重要的应用价值.结合国家地震前兆台网中心数据库8口井的数字化水位资料等, 研究了承压井含水层介质在不排水状态下的孔隙度、固体骨架的体积压缩系数和含水层内水的体积压缩系数.结果表明, 孔隙度与固体骨架的体积压缩系数和含水层内水的体积压缩系数间存在幂函数关系.在第1象限内, 各井含水层介质固体骨架的体积压缩系数随着孔隙度的增大而增大; 含水层内水的体积压缩系数随着孔隙度的增大而减小.固体骨架和含水层内水的体积压缩系数间满足一元二次多项式关系, 且含水层内水的体积压缩系数要比固体骨架的体积压缩系数大, 水更易压缩.另外, 灰岩骨架的压缩系数相对小于砂岩骨架的压缩系数.

       

    • 图  1  含水层介质构成示意

      Fig.  1.  Schematic of aquifer medium

      图  2  含水层介质应力关系示意

      Fig.  2.  Aquifer medium stress

      图  3  各井孔隙度(n)和固体骨架的体积压缩系数(cs)间的关系

      Fig.  3.  Relationship between porosity (n) and solid skeleton volume compression coefficient (cs) of the wells

      图  4  各井孔隙度(n)和水的体积压缩系数(cw)间的关系

      Fig.  4.  Relationship between porosity (n) and water volume compression coefficient (cw) of the wells

      图  5  8口水井体积压缩系数(cscw)间关系曲线

      Fig.  5.  Relationship curves of volume compression coefficient (cs and cw) of the 8 wells

      表  1  开展研究的8口井基本情况

      Table  1.   General information of the 8 wells studied

      序号 井点名称 井深(m) 含水层岩性 地下水类型 水位埋深(m) 海拔高度(m) 资料处理起始时间(年-月)
      1 宝坻井 427.17 灰岩 承压水 14.0 5.0 2005-04
      2 王3井 1077.00 灰岩和白云岩 岩溶自流 0.0 3.5 2002-01
      3 板桥井 283.60 硅质石灰岩 裂隙承压水 39.6 41.0 2008-01
      4 昌平井 221.60 白云质灰岩 裂隙承压水 68.2 100.0 2002-01
      5 大灰厂井 102.00 砂页岩 孔隙裂隙混合水 14.5 147.0 2008-01
      6 宁河井 60.00 砂岩和粘土为主 承压水 52.6 2.5 2002-01
      7 辛庄井 648.12 砂质粘土及砂土 承压水 102.2 2.0 2008-01
      8 玉田井 456.40 奥陶系灰岩 裂隙承压水 7.5 80.0 2002-01
      下载: 导出CSV

      表  2  不排水状态下8口井孔隙度和体积压缩系数的拟合结果

      Table  2.   Undrained condition fitting results of porosity and volume compression coefficient of 8 wells

      序号 井点名称 孔隙度n和固体骨架的体积压缩系数cs间的关系 孔隙度n和水的体积压缩系数cw间的关系
      拟合方程 R2 标准差 拟合方程 R2 标准差
      1 宝坻井 cs=0.5756(1-n)-1.8550 0.3505 104.600 cw=0.000141n-4.5610 0.6504 426.90
      2 王3井 cs=4.5950(1-n)-0.7749 0.9472 4.795 cw=0.90601n-1.5590 0.5806 59.46
      3 板桥井 cs=1.8390(1-n)-1.1870 0.3811 64.050 cw=0.0403n-2.5520 0.8204 51.37
      4 昌平井 cs=0.1222(1-n)-2.0950 0.7558 63.250 cw=1.6320×10-9n-7.0410 0.9111 559.40
      5 大灰厂井 cs=4.9300(1-n)-1.3450 0.7006 370.500 cw=1.6390×10-4n-4.1090 0.7225 1707.00
      6 宁河井 cs=24.3800(1-n)-1.0320 0.6771 310.900 cw=2.3730n-2.1740 0.8669 1858.00
      7 辛庄井 cs=59.8900(1-n)-0.6942 0.4510 228.400 cw=2.6030n-1.9750 0.7023 1240.00
      8 玉田井 cs=6.0370(1-n)-0.9782 0.6709 18.720 cw=3.9830×10-8n-7.2260 0.8267 129.70
      下载: 导出CSV

      表  3  8口水井体积压缩系数(cscw)间关系统计

      Table  3.   Statistics of the 8 wells volume compression coefficient (cs and cw)

      序号 井点名称 拟合方程 R2 标准差
      1 宝坻井 cw=0.005598cs2-2.778cs-507.60 0.7778 304.20
      2 王3井 cw=0.057550cs2-2.184cs+48.70 0.8594 22.84
      3 板桥井 cw=0.048880cs2-2.746cs+53.62 0.9374 24.50
      4 昌平井 cw=0.010890cs2+2.364cs-66.88 0.9340 484.00
      5 大灰厂井 cw=0.003094cs2-0.01124cs-316.20 0.7337 1686.00
      6 宁河井 cw=0.002626cs2+4.265cs-888.80 0.6229 3132.00
      7 辛庄井 cw=0.001572cs2+5.242cs-1286 0.4405 1404.00
      8 玉田井 cw=0.020100cs2+3.308cs-71.85 0.9439 72.70
      下载: 导出CSV
    • [1] Bredehoeft, J.D., 1967. Response of Well-Aquifer Systems to Earth Tides. Journal of Geophysical Research, 72(12): 3075-3087. doi: 10.1029/JZ072i012p03075
      [2] Dou, H.E., 2010. The Justice of Rock Pore Compressibility: A Basis of Understanding Low Permeability Reservoirs. Special Oil and Gas Reservoirs, 17(5): 119-122(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ201005036.htm
      [3] Erskine, A.D., 1991. The Effect of Tidal Fluctuation on a Coastal Aquifer in the UK. Groundwater, 29(4): 556-562. doi: 10.1111/j.1745-6584.1991.tb00547.x
      [4] George, H.R., Edwin, S.R., 1979. Determination of Aquifer Parameters from Well Tides. Journal of Geophysical Research, 84(B11): 6071-6082. doi: 10.1029/JB084iB11p06071
      [5] Hall, H.N., 1953. Compressibility of Reservoir Rocks. Journal of Petroleum Technology, 5(1): 17-19. doi: 10.2118/953309-G
      [6] John, B., Keith, E.S., Mousa, D.S., 1991. Estimating Aquifer Parameters from Analysis of Forced Fluctuations in Well Level: An Example from the Nubian Formation near Aswan, Egypt 2 Poroelastic Properties. Journal of Geophysical Research, 96(B7): 12139-12160. doi: 10.1029/91JB00956
      [7] Kamp, G., Gale, J.E., 1983. Theory of Earth Tide and Barometric Effects in Porous Formations with Compressible Grains. Water Resources Research, 19(2): 538-544. doi: 10.1029/WR019i002p00538
      [8] Lai, G.J., Ge, H.K., Wang, W.L., 2013. Transfer Functions of the Well-Aquifer Systems Response to Atmospheric Loading and Earth Tide from Low to High-Frequency Band. Journal of Geophysical Research, 118(5): 1904-1924. doi: 10.1002/jgrb.50165
      [9] Li, C.H., Chen, Y.H., Tian, Z.J., 1990. The Dynamic Response of Well-Aquifer System to Earth Tides and Its Influence Factors. Earthquake Research in China, 6(2): 37-45(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=ZGZD199002004&dbcode=CJFD&year=1990&dflag=pdfdown
      [10] Li, C.L., 2003. The Relationship between Rock Compressibility and Porosity. China Offshore Oil and Gas(Geology), 17(5): 355-358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD200305013.htm
      [11] Li, C.L., 2005. Low Permeability Rocks are Less Sensitive to Stress. Oil Drilling & Production Technology, 27(4): 61-63(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7393.2005.04.027
      [12] Luo, R.L., 2006. Queries to the Viewpoint-Low Permeability Reservoirs Have not the Characteristics of Strong Stress Sensitivity. Oil Drilling & Production Technology, 28(2): 78-80(in Chinese with English abstract). doi:10.3969/j.issn.1000-7393.2006.02.024
      [13] Qin, T.L., Li, D., Chen, Y.Q., 1989. Practical Methods of Reservoir Engineering. Petroleum Industry Press, Beijing, 64 (in Chinese).
      [14] Narasinmhan, T.N., Kanehiro, B.Y., Witherspon, P.A., 1984. Interpretation of Earth Tide Response of Three Deep, Confined Aquifers. Journal of Geophysical Research, 89(B3): 1913-1924. doi: 10.1029/JB089iB03p01913
      [15] Rojstaczer, S., 1988. Determination of Fluid Flow Properties from the Response of Water Levels in Wells to Atmospheric Loading. Water Resources Research, 24(11): 1927-1938. doi: 10.1029/WR024i011p01927
      [16] Tian, Z.J., Gu, Y.Z., 1985. Analysis and Processing of Data on Fluctuations of Groundwater Level. Seismology and Geology, 7(3): 51-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198503008.htm
      [17] Zhang, Z.D., 1986. High-Order Difference Method for Deep Well Water Level Pressure Coefficient. Journal of Seismology, (2): 74-78(in Chinese).
      [18] Zhang, Z.D., Zheng, J.H., Feng, C.G., 1989. Quantitative Relationship between the Earth Tide Effect of Well Water Level, the Barometric Pressure Effect and the Parameters of Aquifers. Northwestern Seismological Journal, 11(3): 47-52(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=ZBDZ198903006&dbcode=CJFD&year=1989&dflag=pdfdown
      [19] Zhang, Z.D., Zheng, J.H., Zhang, G.C., 1995. Response Functions of Well Aquifer System to Tide. Northwestern Seismological Journal, 17(3): 66-71(in Chinese with English abstract).
      [20] 窦宏恩, 2010. 正确对待岩石孔隙压缩系数是认识低渗透储层的基础——兼答《应科学看待低渗透储集层》一文作者. 特种油气藏, 17(5): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201005036.htm
      [21] 李春洪, 陈益惠, 田竹君, 1990. 井-含水层系统对固体潮的动态响应及其影响因素. 中国地震, 6(2): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199002004.htm
      [22] 李传亮, 2003. 岩石压缩系数与孔隙度的关系. 中国海上油气(地质), 17(5): 355-358. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200305013.htm
      [23] 李传亮, 2005. 低渗透储层不存在强应力敏感. 石油钻采工艺, 27(4): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200504019.htm
      [24] 罗瑞兰, 2006. "对低渗储层不存在强应力敏感"观点的质疑. 石油钻采工艺, 28(2): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200602027.htm
      [25] 秦同洛, 李璗, 陈元千, 1989. 实用油藏工程方法. 北京: 石油工业出版社, 64.
      [26] 田竹君, 谷园珠, 1985. 地下水微动态资料的分析与处理. 地震地质, 7(3): 51-59.
      [27] 张昭栋, 1986. 高阶差分法求深井水位的气压系数. 地震学刊, (2): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK198602010.htm
      [28] 张昭栋, 郑金涵, 冯初刚, 1989. 井水位的固体潮效应和气压效应与含水层参数间的定量关系. 西北地震学报, 11(3): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ198903006.htm
      [29] 张昭栋, 郑金涵, 张广城, 1995. 水井含水层系统的潮汐响应函数. 西北地震学报, 17(3): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ503.009.htm
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  3124
    • HTML全文浏览量:  148
    • PDF下载量:  428
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-12-06
    • 刊出日期:  2015-07-15

    目录

      /

      返回文章
      返回