Impact of Acid Rain to δ13CDIC of Karst Groundwater and Carbon Sink in Dry Season in Guilin
-
摘要: 定量评价硫酸对岩溶碳汇效应的影响有助于提高岩石风化碳汇通量估算精度, 对当前全球气候变化研究意义重大.选取受酸雨影响的桂林岩溶区为研究对象, 在枯水期对研究区14个岩溶大泉和15条地下河水化学成分和碳同位素进行了测试分析, 结果表明: 岩溶大泉和地下河中阳离子以Mg2+和Ca2+为主, 阴离子以HCO3-为主, 分别占阳离子和阴离子组成的90%以上, SO42-含量较低, 其含量范围为0.004~0.213mmol/L; 所占阴离子组成比例为0.12%~6.11%;δ13CDIC、[Ca2++Mg2+]/[HCO3-]更偏向于碳酸溶解端元, 离硫酸溶解端元距离远, 证实硫酸参与碳酸盐岩的溶解对地下水无机碳(dissolved inorganic carbon, 简称DIC)及δ13CDIC的影响有限; 与Sr2+/Ca2+值一样, δ13CDIC主要受径流条件控制, 其大小可以反映地下水径流条件的强弱.利用化学计量关系计算出由硫酸溶蚀碳酸盐岩的平均比例为22.64%, 产生的DIC(HCO3-H2SO4)占总DIC的平均比例为13.04%, 碳酸产生的DIC(HCO3-H2CO3)占地下水总DIC的比例为86.96%, 其中来源于土壤大气中的HCO3-比例为43.48%.因此, 扣除硫酸对地下水中DIC的贡献后, 岩溶碳汇效应将减少13.04%.
-
关键词:
- 岩溶碳汇 /
- 硫酸 /
- 溶解无机碳同位素 /
- Sr2+/Ca2+桂林岩溶区 /
- 地下水 /
Abstract: Quantitative evaluation of the impact of sulfuric acid to karst carbon sink not only improves the estimation accuracy of karst carbon sinks, but also facilitates research on global climate change. In this paper, Guilin karst area affected by acid rain is selected for studying. The results of testing and analysis of the chemical composition and inorganic carbon isotope in 14 karst spring and 15 subterraneans show that in both karst spring and subterranean, Mg2+ and Ca2+ are the main negative ions, and HCO3- is the main positive ion, which were accounted for more than 90% of negative ion and positive ion respectively, and SO42- has a lower content, which content range was 0.004-0.213mmol/L and the composition ratio was 0.12%-6.11%; The δ13CDIC, [Ca2++Mg2+]/[HCO3-] are more inclined to carbonate dissolution endmember, and the longer distance from sulfuric acid dissolution endmember indicates the limited impact of sulfuric acid dissolution of carbonate rocks involved in groundwater inorganic carbon (DIC) and δ13CDIC. Same as the situation of Sr2+/Ca2+ values, δ13CDIC could reflect the run-off condition of groundwater to some degree. Using the stoichiometry method calculate, the average proportion of DIC(HCO3-H2SO4) produced by sulfuric acid gained by stoichiometric relationship is 22.64%, accounts for 13.04%, while that produced by carbonic acid accounts for 86.96%, of which 43.48% comes from the soil atmosphere. Deducting DIC contribution of sulfuric acid to the groundwater, 13.04% karst carbon sink will be reduced. -
表 1 桂林地区岩溶地下水水化学特征
Table 1. The chemical compositions of karst groundwater in Guilin
类型 编号 经度 纬度 pH 水温(℃) 电导率(μs/cm) K+(mmol/L) Na+(mmol/L) Ca2+ (mmol/L) Mg2+ (mmol/L) Cl- (mmol/L) SO42- (mmol/L) HCO3- (mmol/L) Sr2+ (μmol/L) Sr2+/Ca2+ (10-3) ZT+(%) ZT-(%) NICB (%) δ13CDIC (‰) 硫酸溶蚀碳酸盐岩的比例(%) [HCO3-]/[H2CO3]的比例(%) 岩溶大泉 A01 110°14′18″ 25°27′36″ 7.30 20.3 288 0.010 0.031 1.609 0.071 0.125 0.087 2.796 0.696 0.433 3.40 3.09 4.7 -12.29 29.16 17.07 A02 110°23′18″ 25°28′21″ 7.48 20.7 301 0.040 0.064 1.542 0.103 0.174 0.084 2.889 0.695 0.451 3.40 3.23 2.5 -10.79 19.60 10.86 A03 110°18′26″ 25°26′48″ 7.39 19.6 378 0.015 0.033 2.085 0.062 0.174 0.140 3.821 0.735 0.353 4.34 4.27 0.8 -14.20 18.30 10.07 A04 110°22′01″ 25°04′03″ 7.50 15.8 341 0.005 0.009 1.850 0.200 0.075 0.128 3.541 0.667 0.360 4.11 3.87 3.0 -13.43 23.43 13.27 A05 110°33′06″ 24°56′21″ 7.25 21.4 419 0.015 0.062 1.887 0.560 0.174 0.193 4.100 0.716 0.379 4.97 4.66 3.2 -11.94 29.37 17.21 A06 111°20′10″ 24°15′00″ 7.28 21.2 316 0.012 0.016 1.551 0.355 0.125 0.087 3.308 0.621 0.400 3.84 3.61 3.1 -10.66 22.37 12.59 A07 111°15′42″ 24°23′58″ 7.87 13.9 492 0.056 0.120 2.291 0.565 0.349 0.163 4.846 0.688 0.300 5.89 5.52 3.2 -11.10 27.61 16.02 A08 111°02′22″ 24°24′38″ 7.14 21.6 385 0.017 0.035 1.815 0.443 0.224 0.107 3.821 0.621 0.342 4.57 4.26 3.5 -12.88 27.37 15.85 A09 111°07′00″ 24°29′35″ 7.39 21.9 271 0.030 0.086 1.138 0.434 0.174 0.027 2.842 0.480 0.422 3.26 3.07 3.0 -9.48 14.01 7.53 A10 111°01′30″ 25°06′45″ 7.43 20.5 309 0.025 0.043 1.527 0.246 0.174 0.008 3.215 1.374 0.900 3.61 3.41 3.0 -9.24 14.00 7.53 A11 110°53′20″ 25°06′50″ 7.61 21.4 266 0.011 0.028 1.296 0.247 0.174 0.028 2.749 0.391 0.302 3.13 2.98 2.4 -10.90 16.61 9.06 A12 110°42′27″ 24°41′22″ 7.04 21.1 365 0.007 0.014 1.760 0.408 0.100 0.064 3.867 0.968 0.550 4.36 4.10 3.1 -11.81 17.95 9.86 A13 110°21′25″ 24°37′53″ 7.18 21.7 326 0.031 0.060 1.486 0.588 0.249 0.143 3.495 0.727 0.489 4.24 4.03 2.5 -12.28 27.85 16.17 A14 110°23′09″ 24°15′03″ 7.66 16.5 412 0.018 0.057 1.975 0.405 0.199 0.100 4.147 0.714 0.362 4.83 4.55 3.1 -11.67 22.43 12.63 地下河 B01 110°37′14″ 25°34′26″ 8.09 14.4 201 0.014 0.025 0.909 0.162 0.174 0.060 1.677 0.475 0.523 2.18 1.97 5.0 -12.33 36.61 22.40 B02 110°33′23″ 25°14′11″ 7.65 18.3 373 0.017 0.029 2.024 0.190 0.125 0.105 3.867 0.752 0.372 4.47 4.20 3.1 -14.41 21.73 12.19 B03 110°31′06″ 25°11′23″ 7.61 19.8 297 0.015 0.023 1.512 0.547 0.150 0.117 3.518 0.479 0.317 4.16 3.90 3.1 -12.70 25.42 14.56 B04 110°31′35″ 25°11′38″ 8.25 17.5 358 0.013 0.022 1.341 0.448 0.174 0.004 3.122 0.566 0.422 3.61 3.30 4.5 -12.38 21.12 11.81 B05 110°30′53″ 25°04′45″ 8.00 19.0 317 0.011 0.016 1.524 0.184 0.125 0.005 3.169 0.579 0.380 3.44 3.30 2.1 -13.83 9.56 5.02 B06 110°59′41″ 24°30′19″ 7.15 20.7 428 0.018 0.052 2.164 0.295 0.199 0.080 4.333 0.787 0.364 4.99 4.69 3.0 -13.29 20.56 11.46 B07 110°55′37″ 24°38′07″ 7.50 18.9 202 0.041 0.123 0.889 0.183 0.100 0.007 2.050 0.413 0.465 2.31 2.16 3.2 -12.23 0.37 0.19 B08 110°42′26″ 24°41′22″ 7.44 20.6 485 0.022 0.038 2.080 0.783 0.150 0.104 5.079 0.695 0.334 5.79 5.44 3.1 -14.03 19.86 11.02 B09 110°26′58″ 24°58′55″ 7.56 20.7 454 0.011 0.016 2.376 0.361 0.125 0.107 4.846 0.713 0.300 5.50 5.18 3.0 -15.03 20.04 11.14 B10 110°56′53″ 25°10′43″ 7.67 16.8 217 0.000 0.029 0.995 0.276 0.100 0.087 2.190 0.450 0.452 2.57 2.46 2.1 -11.53 21.49 12.04 B11 110°20′12″ 24°24′37″ 8.06 18.7 232 0.019 0.033 1.020 0.322 0.125 0.139 2.004 0.657 0.645 2.74 2.41 6.4 -12.41 45.62 29.55 B12 110°22′33″ 24°24′26″ 7.45 18.4 422 0.030 0.056 1.822 0.568 0.199 0.213 3.774 1.116 0.613 4.87 4.40 5.0 -11.59 39.14 24.33 B13 110°24′19″ 24°47′36″ 7.77 19.5 441 0.015 0.036 1.957 0.634 0.224 0.146 4.403 0.638 0.326 5.23 4.92 3.1 -13.16 27.10 15.67 B14 110°33′48″ 24°54′31″ 7.79 17.1 402 0.009 0.019 1.619 0.799 0.125 0.067 4.380 0.782 0.483 4.86 4.64 2.4 -13.53 15.48 8.39 B15 110°27′07″ 25°03′07″ 8.21 16.6 301 0.015 0.027 1.562 0.162 0.125 0.087 2.982 0.680 0.436 3.49 3.28 3.1 -12.77 22.47 12.66 表 2 不同溶蚀条件下HCO3-所占比例
Table 2. Proportion of HCO3- in different corrosion conditions
溶蚀条件 H2SO4溶蚀比例(%) HCO3-H2SO4(%) HCO3-H2CO3(%) HCO3土壤大气(%)- 硫酸、碳酸溶蚀碳酸盐岩 22.64 13.04 86.96 43.48 碳酸溶蚀碳酸盐岩 0 0 100.00 50.00 -
[1] Anderson, S.P., Drever, J.I., Frost, C.D., et al., 2000. Chemical Weathering in the Foreland of a Retreating Glacier. Geochimica et Cosmochimica Acta, 64(7): 1173-1189. doi: 10.1016/S0016-7037(99)00358-0 [2] Atekwana, E.A., Krishnamurthy, R.V., 1998. Seasonal Variations of Dissolved Inorganic Carbon and δ13C of Surface Waters: Application of a Modified Gas Evolution Technique. Journal of Hydrology, 205(3-4): 265-278. doi: 10.1016/S0022-1694(98)00080-8 [3] Cao, J.H., Zhou, L., Yang, H., et al., 2011. Comparison of Carbon Transfer between Forest Soils in Karst and Clasolite Areas and the Karst Carbon Sink Effect in Maocun Village of Guilin. Quaternary Sciences, 31(3): 431-437 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2011.03.05 [4] Fang, J.Y., 1985. Sedimentary Facies of the Carbonate Rocks of the Upper Devonian in Guilin District, Guangxi. Acta Sedimentologica Sinica, 3(4): 73-83(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB198504006.htm [5] Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1-4): 3-30. doi: 10.1016/S0009-2541(99)00031-5 [6] Galy, A., France-Lanord, C., 1999. Weathering Processes in the Ganges-Brahmaputra Basin and the Riverine Alkalinity Budget. Chemical Geology, 159(1-4): 31-60. doi: 10.1016/S0009-2541(99)00033-9 [7] Goldscheider, N., 2007. Methods in Karst Hydrogeology. Taylor & Francis, New York, 264. [8] Han, G.L., Liu, C.Q., 2004. Water Geochemistry Controlled by Carbonate Dissolution: A Study of the River Waters Draining Karst-Dominated Terrain, Guizhou Province, China. Chemical Geology, 204(1-2): 1-21. doi: 10.1016/j.chemgeo.2003.09.009 [9] Han, G.L., Liu, C.Q., 2005. Hydrogeochemistry of Rivers in Guizhou Province, China: Constraints on Crustal Weathering in Karst Terrain. Advances in Earth Science, 20(4): 394-406(in Chinese with English abstract). http://www.researchgate.net/publication/304715020_Hydrogeochemistry_of_rivers_in_Guizhou_Province_China_constraints_on_weathering_in_karst_terrain [10] Han, G.L., Liu, C.Q., 2006. Strontium Isotope and Major Ion Chemistry of the Rainwaters from Guiyang, Guizhou Province, China. Science of the Total Environment, 364(1-3): 165-174. doi: 10.1016/j.scitotenv.2005.06.025 [11] Huang, Q.B., Kang, Z.Q., Qin, X.Q., et al., 2011a. Distribution Characteristics of ρSr2+, Sr/Mg, Sr/Ca and Its Applications in Karst Water System of Xishui County. Geological Science and Technology Information, 30(4): 98-103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201104016.htm [12] Huang, Q.B., Liu, P.Y., Qin, X.Q., et al., 2011b. The Characteristics of Karst Carbon Sink in Guijiang Catchment. Carsologica Sinica, 30(4): 437-442(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201104016.htm [13] Huang, Q.B., Qin, X.Q., Tang, P.P., et al., 2012. The δ13CDIC Characteristics of Groundwater in Different Karst Environmental Conditions. Earth and Environment, 40(4): 505-511(in Chinese with English abstract). doi: 10.14050/j.cnki.1672-9250.2012.04.016 [14] Huang, Q.B., Qin, X.Q., Tang, P.P., et al., 2013. The Characteristic and Significance of Carbon Isotope (δ13CDIC) and Oxygen Isotope (δ18O) Value in Different Type of Karst Water in Guilin. Geochimica, 42(1): 64-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201301007.htm [15] Jiang, Y.J., Yuan, D.X., 2014. Geochemical Tracers to Characterize Effects of Urbanization on Karst Groundwater Quality from Nanshan Underground River System, SW China. Quaternary Sciences, 34(5): 1044-1053 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2014.05.13 [16] Jiang, Z.C., Yuan, D.X., 1999. CO2 Source-Sink in Karst Processes in Karst Areas of China. Episodes, 22(1): 33-35. doi: 10.18814/epiiugs/1999/v22i1/005 [17] Jiang, Z.C., Yuan, D.X., Cao, J.H., et al., 2012. A Study of Carbon Sink Capacity of Karst Processes in China. Acta Geoscientica Sinica, 33(2): 129-134(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQXB201202001.htm [18] Lang, Y.C., Liu, C.Q., Han, G.L., et al., 2005a. Characterization of Water-Rock Interaction and Pollution of Karstic Hydrological System: A Study on Water Chemistry and Sr Isotope of Surface/Groundwater of the Guiyang Area. Quaternary Sciences, 25(5): 655-662(in Chinese with English abstract). [19] Lang, Y.C., Liu, C.Q., Zhao, Z.Q., et al., 2005b. Chemical Compositions of Surface and Ground Waters of Guiyang City: Discussion of Water-Rock Interaction and Contamination in Karstic Hydrological System. Advances in Water Science, 16(6): 826-832(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200506012.htm [20] Li, J., Liu, C.Q., Li, L.B. et al., 2010. The Impacts of Chemical Weathering of Carbonate Rock by Sulfuric Acid on the Cycling of Dissolved Inorganic Carbon in Changjiang River Water. Geochimica, 39(4): 305-313(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQHX201004002.htm [21] Ling, D.J., Zhang, J.E., Ouyang, Y., 2007. Advancements in Research on Impact of Acid Rain on Soil Ecosystem: A Review. Soils, 39(4): 514-521(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TURA200704005.htm [22] Liu, C.Q., Jiang, Y.K., Tao, F.X., et al., 2008. Chemical Weathering of Carbonate Rocks by Sulfuric Acid and the Carbon Cycling in Southwest China. Geochimica, 37(4): 404-414 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200804013.htm [23] Liu, Z.H., 2012. New Progress and Prospects in the Study of Rock-Weathering-Related Carbon Sinks. Chin Sci Bull (Chin. Ver. ), 57(2-3): 95-102 (in Chinese). doi: 10.1360/972011-1640 [24] Liu, Z.H., Dreybrodt, W., Liu, H., 2011. Atmospheric CO2 Sink: Silicate Weathering or Carbonate Weathering? Applied Geochemistry, 26: S292-S294. doi: 10.1016/j.apgeochem.2011.03.085 [25] Qian, J.P., Ye, J., 2009. Environmental Problems in Guilin City with the Comprehensive Prevention Countermeasures. Mineral Resources and Geology, 23(2): 183-191 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD200902017.htm [26] Qiu, D.S., Zhuang, D.F., Hu, Y.F., et al., 2004. Estimation of Carbon Sink Capacity Caused by Rock Weathering in China. Earth Science—Journal of China University of Geosciences, 29(2): 177-182, 190 (in Chinese with English abstract). http://www.researchgate.net/publication/283769508_Estimation_of_carbon_sink_capacity_caused_by_rock_weathering_in_China [27] Shawan, S.D., Andrew, L.H., 2002. Strontium and Carbon Isotope Constraints on Carbonate-Solution Interactions and Inter-Aquifer Mixing in Groundwaters of the Semi-Arid Murray Basin, Australia. Journal of Hydrology, 262: 50-67. doi: 10.1016/S0022-1694(02)00021-5 [28] Telmer, K., Veizer, J., 1999. Carbon Fluxes, PCO2, and Substrate Weathering in a Large Northern River Basin, Canada: Carbon Isotope Perspectives. Chemical Geology, 159(1-4): 61-86. doi: 10.1016/S0009-2541(99)00034-0 [29] Tesoriero, A.J., Pankow, J.F., 1996. Solid Solution Partitioning of Sr2+, Ba2+, and Cd2+ to Calcite. Geochim. Cosmochim. Acta, 60(6): 1053-1063. doi: 10.1016/0016-7037(95)00449-1 [30] Weinbauer, M.G., Velimirov, B., 1995. Calcium, Magnesium and Strontium Concentrations in the Calcite Sclerites of Mediterranean Gorgonians (Coelenterate: Octocorallia). Estuarine, Coastal and Shelf Science, 40(1): 87-104. doi: 10.1016/0272-7714(95)90015-2 [31] Yuan, D.X., 1999. Progress in the Study on Karst Processes and Carbon Cycle. Advance in Earth Sciences, 14(5): 425-432(in Chinese with English abstract). [32] Yu, S., He, S.Y., Yang, H., et al., 2012. Research on Carbon Source Effect of Acid Rain in a Typical Carbonate Rock Area, Guangxi. Earth and Environment, 40(1): 44-49(in Chinese with English abstract). doi: 10.14050/j.cnki.1672-9250.2012.01.007 [33] Zhang, H.B., He, S.Y., Yu, S., et al., 2012a. Hydrochemical Characteristics and Influencing Factors of the River Water in the Guijiang. Carsologica Sinica, 31(4): 395-401 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201204009.htm [34] Zhang, H.B., Yu, S., He, S.Y., et al., 2012b. Analysis on the Chemical Characteristics of the Atmospheric Precipitation in Guilin. Carsologica Sinica, 31(3): 289-295 (in Chinese with English abstract). [35] Zhang, X.B., Jiang, Y.J., Qiu, S.L., et al., 2012. Agricultural Activities and Carbon Cycling in Karst Areas in Southwest China: Dissolving Carbonate Rocks and CO2 Sink. Advances in Earth Science, 27(4): 466-476(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201204012.htm [36] 曹建华, 周莉, 杨慧, 等, 2011. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究. 第四纪研究, 31(3): 431-437. doi: 10.3969/j.issn.1001-7410.2011.03.05 [37] 方积义, 1985. 桂林地区上泥盆统碳酸盐岩沉积相. 沉积学报, 3(4): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504006.htm [38] 韩贵琳, 刘丛强, 2005. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征. 地球科学进展, 20(4): 394-406. doi: 10.3321/j.issn:1001-8166.2005.04.004 [39] 黄奇波, 康志强, 覃小群, 等, 2011a. 习水县岩溶水系统ρ(Sr2+)、ρ(Sr)/ρ(Ca)、ρ(Sr)/ρ(Mg)分布特征及其应用. 地质科技情报, 30(4): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104016.htm [40] 黄奇波, 刘朋雨, 覃小群, 等, 2011b. 桂江流域岩溶碳汇特征. 中国岩溶, 30(4): 437-442. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201104016.htm [41] 黄奇波, 覃小群, 唐萍萍, 等, 2012. 不同岩溶环境条件下岩溶地下水中δ13CDIC特征. 地球与环境, 40(4): 505-511. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201204007.htm [42] 黄奇波, 覃小群, 唐萍萍, 等, 2013. 桂林地区不同类型岩溶地下水中δ13CDIC、δ18O的特征及意义. 地球化学, 42(1): 64-72. doi: 10.3969/j.issn.0379-1726.2013.01.008 [43] 蒋勇军, 袁道先, 2014. 城市发展对岩溶地下水质影响的地球化学示踪——以重庆南山老龙洞地下河系统为例. 第四纪研究, 34(5): 1044-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201405013.htm [44] 蒋忠诚, 袁道先, 曹建华, 等, 2012. 中国岩溶碳汇潜力研究. 地球学报, 33(2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201202001.htm [45] 郎赟超, 刘丛强, 赵志琦, 等, 2005a. 贵阳市地表水地下水化学组成: 喀斯特水文系统水—岩反应及污染特征. 水科学进展, 16(6): 826-832. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200506012.htm [46] 郎赟超, 刘丛强, 韩贵琳, 等, 2005b. 贵阳市区地表/地下水化学与锶同位素研究. 第四纪研究, 25(5): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200505014.htm [47] 李军, 刘丛强, 李龙波, 等, 2010. 硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响. 地球化学, 39(4): 305-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201004002.htm [48] 凌大炯, 章家恩, 欧阳颖, 2007. 酸雨对土壤生态系统影响的研究进展. 土壤, 39(4): 514-521. doi: 10.3321/j.issn:0253-9829.2007.04.004 [49] 刘丛强, 蒋颖魁, 陶发祥, 等, 2008. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环. 地球化学, 37(4): 404-414. doi: 10.3321/j.issn:0379-1726.2008.04.014 [50] 刘再华, 2012. 岩石风化碳汇研究的最新进展和展望. 科学通报, 57(2-3): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2012Z1002.htm [51] 钱建平, 叶军, 2009. 桂林市环境问题及综合防治对策. 矿产与地质, 23(2): 183-191. doi: 10.3969/j.issn.1001-5663.2009.02.016 [52] 邱冬生, 庄大方, 胡云锋, 等, 2004. 中国岩石风化作用所致的碳汇能力估算. 地球科学——中国地质大学学报, 29(2): 177-182, 190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402009.htm [53] 袁道先, 1999. "岩溶作用与碳循环"研究进展. 地球科学进展, 14(5): 425-432. doi: 10.3321/j.issn:1001-8166.1999.05.001 [54] 于奭, 何师意, 杨慧, 等, 2012. 酸雨对广西典型碳酸盐岩地区碳源效应研究. 地球与环境, 40(1): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201201008.htm [55] 张红波, 何师意, 于奭, 等, 2012a. 桂江流域河流水化学特征及影响因素. 中国岩溶, 31(4): 395-401. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201204009.htm [56] 张红波, 于奭, 何师意, 等, 2012b. 桂林岩溶区大气降水的化学特征分析. 中国岩溶, 31(3): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201203011.htm [57] 张兴波, 蒋勇军, 邱述兰, 等, 2012. 农业活动对岩溶作用碳汇的影响: 以重庆青木关地下河流域为例. 地球科学进展, 27(04): 466-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201204012.htm