Environmentally Sensitive Grain-Size Extraction of Deep Hole Sediment from Tianjin Coastal Plain and Its Significance
-
摘要: 沉积物环境敏感粒度是进行古环境研究的重要方法之一, 然而华北平原地区很少进行完整的第四纪全取心深孔沉积物环境敏感粒度组分的提取及分析.对天津渤海湾G1和G2孔第四纪沉积物样品进行粒度分析, 采用粒级-标准偏差和主成分分析两种方法进行了沉积物环境敏感粒度组分提取.对比提取结果发现, 两种方法存在差异性的同时还存在一定的兼容性, 沉积层理厚度越薄, 兼容性越明显; 主成分分析方法对沉积物环境敏感粒度组分刻画得更为细致, 粒级-标准偏差方法不适合深孔沉积物整体敏感粒度组分的提取.G1孔环境敏感粒度组分的粒度峰值为6.700μm、15.650μm、36.240μm、176.900μm、282.100μm、716.800μm; G2孔环境敏感粒度组分的粒度峰值为0.578μm、176.000μm, 分别对应6个和3个粒度分布区间, 指示两孔整体上的沉积物来源及沉积环境空间存在差别.G2孔相对于G1孔整体上的沉积强度大且沉积环境较为稳定, 适合于开展高分辨率的古环境重建工作.Abstract: Sediment environment sensitive granularity is one of the important methods of the ancient environment study, but there are very few complete quaternary sediment core deep hole to extract environmentally sensitive granularity component and analysis in the north China plain regions. Grain size versus standard deviation, and principal component analyses have been applied to extract sensitive grain size components from sediment samples of G1 and G2 in Tianjin Bohai bay. Comparison of extraction results of the two methods shows both differences and compatibility. The thinner the thickness of sediment bedding is, the more obvious the compatibility is. It is found that principal component analyses can provide better description while grain size versus standard deviation is not suitable for the deep hole extraction. Six and three environmentally sensitive granularity component peaks appear in G1 and G2 holes, which are 6.70μm, 15.65μm, 36.24μm, 176.90μm, 282.10μm, 716.80μm for G1, 0.578μm and 176.000μm for G2 respectively, indicating different sediment sources and sedimentary spatial environment for G1 and G2. Compared with G1 hole, the sedimentary environment of G2 is more stable with stronger deposit strength, which can be used to reconstruct the palaeoenvironment.
-
表 1 G1孔沉积物粒度主成分分析结果
Table 1. The sediment granularity principal component analysis results of G1 hole
公因子 F1 F2 F3 F4 F5 特征值 69.318 12.191 7.575 6.904 5.191 贡献率占总方差(%) 59.757 10.509 6.530 5.952 4.475 累积贡献率(%) 59.757 70.266 76.796 82.748 87.223 表 2 G2孔沉积物粒度主成分分析结果
Table 2. The sediment granularity principal component analysis results of G2 hole
公因子 F1 F2 F3 F4 特征值 26.180 8.420 5.020 2.790 贡献率占总方差(%) 54.571 17.543 10.465 5.816 累积贡献率(%) 54.571 72.083 82.548 88.384 表 3 G1和G2钻孔沉积物敏感粒度组分
Table 3. The drilling sensitive sediment particle size compositions of G1 and G2
公因子 F1 F2 F3 F4 F5 因子构成(μm) G1 0.112~18.860 101.100~213.200 0.040~0.195 8.943~12.990 18.860~47.940 43.670~92.090 176.900~234.000 282.100~541.900 G2 0.289~15.550 104.600~209.300 11.000~62.220 114.600~176.000 248.900~497.800 44.000~87.990 176.000~209.300 表 4 主成分分析提取的敏感粒度组分
Table 4. Sensitive grain size component of the principal component analysis
公因子 F1 F2 F3 因子构成(μm) 0.289~22.000 73.990~296.000 18.500~73.990 148.000~418.600 73.990~124.400 -
[1] Chen, Q., Liu, D.Y., Chen, Y.J., et al., 2013. Comparative Analysis of Grade-Standard Deviation Method and Factors Analysis Method for Environment Sensitive Factor Analysis. Earth and Environment, 41(3): 319-325(in Chinese with English abstract). http://www.researchgate.net/publication/268979148_Comparative_Analysis_of_Grade-standard_Deviation_Method_and_Factors_Analysis_Method_for_Environmental_Sensitive_Factor_Analysis_in_Chinese_with_English_abstract/download [2] Folk, R.L., Ward, W.C., 1957. Barazos River Bar: A Study in the Significance of Grain Parameters. Journal of Sedimentary Petrology, 31: 514-519. [3] Huang, J., Li, A.C., Wan, S.M., 2011. Sensitive Grain-Size Records of Holocene East Asian Summer Monsoon in Sediments of Northern South China Sea Slope. Quaternary Research, 75(3): 734-744. doi: 10.1016/j.yqres.2011.03.002 [4] Jiang, H., Wang, K.F., Zhang, Y.L., 1981. Spore-Pollen Assemblages from the Western Part of Bohai Bay since the Late Pleistocene and Their Paleoclimate and Paleogeography. Transactions of Oceanology and Limnology, (4): 34-42(in Chinese with English abstract). doi: 10.13984/j.cnki.cn37-1141.1981.04.007 [5] Jiang, Q.F., Liu, X.Q., Shen, J., 2006. Grain-Size Characteristics of Wulungu Lake Sediments and Its Palaeoclimate and Palaeoenvironment Implication. Acta Sedimentologica Sinica, 24(6): 877-882(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2006.06.014 [6] Li, J., Liang, X., Jin, M.G., et al., 2014. Geochemistry of Clayey Aquitard Pore Water as Archive of Paleo-Environment, Western Bohai Bay. Journal of Earth Science, 25(6): 1-8. doi: 10.1007/s12583-014-0491-x [7] Liu, J.G., Li, A.C., Chen, M.H., et al., 2008. Sedimentary Changes during the Holocene in the Bohai Sea and Its Paleoenvironmental Implication. Continental Shelf Research, 28(10): 1333-1339. doi: 10.1016/j.csr.2008.03.006 [8] North Shaanxi Team of Chengdu Geology Institute, 1978. Grain-Size Analysis of Sedimentary Rock and Its Application. Geological Publishing House, Beijing, 31-143 (in Chinese). [9] Prins, M.A., Postma, G., Weltje, G., 2000. Controls on Terrigenous Sediment Supply to the Arabian Sea during the Late Quaternary: The Makran Continental Slope. Marine Geology, 169(3): 351-371. doi: 10.1016/S0025-3227(00)00087-6 [10] Shen, J., Wang, Y., Yang, X.D., et al., 2006. Lake Sedimentary Records of Regional Characteristics of Sand and Evolution History: Hongjiannao Lake in Shaanxi, for Example. Chinese Science Bulletin, 51(1): 87-92(in Chinese). doi: 10.1360/csb2006-51-1-87 [11] Stuut, J.B.W., Prins, M.A., Schneider, R.R., et al., 2002. A 300-kyr Record of Aridity and Wind Strength in Southwestern Africa: Inferences from Grain-Size Distributions of Sediments on Walvis Ridge, SE Atlantic. Marine Geology, 180(1): 221-233. doi: 10.1016/S0025-3227(01)00215-8 [12] Sun, D.H., An, Z.S., Su, R.X., et al., 2001. Mathematical Approach to Sedimentary Component Partitioning of Polymodal Sediments and Its Applications. Progress in Natural Science, 11(3): 269-276 (in Chinese). http://d.wanfangdata.com.cn/Periodical_zrkxjz-e200105007.aspx [13] Sun, D.H., Bloemendal, J., Rea, D.K., et al., 2002. Grain-Size Distribution Function of Polymodal Sediments in Hydraulic and Aeolian Environment, and Numerical Partitioning of the Sedimentary Components. Sedimentary Geology, 152(3): 263-277. doi: 10.1016/S0037-0738(02)00082-9 [14] Sun, Q.L., Zhou, J., Xiao, J.L., 2001. Grain-Size Characteristics of Lake Daihai Sediments and Its Palaeoenvironment Significance. Marine Geology & Quaternary Geology, 21(1): 93-95(in Chinese with English abstract). [15] Sun, Y.B., Gao, S., Li, J., 2003. Preliminary Analysis of Environmentally Sensitive Grain-Size Population in the Continental Sources of Marginal Sea. Chinese Science Bulletin, 48(1): 83-86 (in Chinese). doi: 10.1360/csb2003-48-1-83 [16] Syvitski, J.P.M., 1991. Factor Analysis of Size Frequeney Distributions: Significance of Factor Solutions Based on Simulation Experiments. In: Syvitski, J.P.M., ed., Principles, Methods, and Applications of Particle Size Analysis. Cambridge University Press, Cambridge, 249-263. [17] Tong, G.B., Ke, M.H., Yu, S.F., 1983. Quaternary Sporo-Pollen Assemblages in Hebei Plain, China and Their Geological Significance. Marine Geology Quaternary Geology, 3(4): 91-102(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198304014.htm [18] Wang, H.B., Chen, F.H., Zhang, J.W., 2002. Environmental Significance of Grain Size of Loess-Paleosol Sequence in Western Part of Chinese Loess Plateau. Journal of Desert Research, 22(1): 21-26(in Chinese with English abstract). [19] Wang, L., Sarnthein, M., Erlenkeuser, H., et al., 1999. East Asian Monsoon Climate during the Late Pleistocene: High-Resolution Sediment Records from the South China Sea. Marine Geology, 156(1): 245-284. doi: 10.1016/S0025-3227(98)00182-0 [20] Wang, Q. 2002. The Block Dynamic Environment Change in the North China since Late Cenozoic, Precambrian and Quaternary Geological Anthology. Geological Publishing House, Beijing. [21] Wang, Y., 2000. Evolution Sequences of Palaeovegetation & Palaeoclimate in the Caofeidian Area since the Last Stage of the Late Pleistocene Epoch. Marine Geology & Quaternary Geology, 20(2): 87-92(in Chinese with English abstract). [22] Xiao, G.Q., Guo, Z.T., Chen, Y.K., et al., 2008. Magnetostratigraphy of BZ1 Borehole in West Coast of Bohai Bay, Northern China. Quaternary Sciences, 28(5): 909-916(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DSJJ200805016.htm [23] Xiao, G.Q., Yang, J.L., Zhao, C.R., et al., 2014. Magnetostratigraphy of Drill Hole G2 in the Tianjin Coastal Area and Its Tectonic Significance. Geological Bulletin of China, 33(10): 1642-1650(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201410025.htm [24] Xiao, S.B., Li A.C., 2005. A Study on Environmentally Sensitive Grain-Size Population in Inner Shelf of the East China Sea. Acta Sedimentologica Sinica, 23(1): 122-129(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2005.01.016 [25] Xu, F.J., Li, A.C., Wan, S.M., et al., 2009. The Geological Significance of Environmental Sensitive Grain-Size Populations in the Mud Wedge of the East China Sea during the Mid-Holocene. Acta Oceanologica Sinca, 31(3): 95-102(in Chinese with English abstract). [26] Xu, J., Ran, Y.K., Shan, X.J., et al., 2004. Development of the Quaternary System in the Bohai Sea Area, China. Seismology and Geology, 26(1): 24-32(in Chinese with English abstact). http://www.researchgate.net/publication/279588080_Development_of_the_Quaternary_system_in_the_Bohai_Sea_area_China [27] Xu, S.J., 2007. Analysis of Grain-Size Populations with Environmentally Sensitive Components in Aeolian Deposits and Their Implications. Journal of Arid Land Resources and Environment, 21(3): 95-98(in Chinese with English abstract). doi: 10.3969/j.issn.1003-7578.2007.03.020 [28] Xu, S.J., Wang, T., 2011. Comparative Study on the Grain Size Characteristics of Loess Deposit both on Miaodao Islands and on the Laizhou Bay Plain and Its Implications for Provenance. Procedia Environmental Sciences, 10: 1869-1875. doi: 10.1016/j.proenv.2011.09.292 [29] Yan, Y.Z., Wang, H., Li, F.L., et al., 2006. Sedimentary Environment and Sea Level Fluctuation Revealed by Holes BQ1 on the West Coast of the Bohai Bay, China. Geological Bulletin of China, 25(3): 357-382(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200603006.htm [30] Zhao, J.H., Shi, L., 2014. Automated Learning of Factor Analysis with Complete and Incomplete Data. Computational Statistics and Data Analysis, 72: 205-218. doi: 10.1016/j.csda.2013.11.008 [31] Zheng, G.Z., Yue, L.P., He, J.F., et al., 2006. Grain-Size Charateristics of the Sediments at Palaeoswamp in Anxi County Downstream of Shulehe River during Holocene and Its Paleoclimatic Significance. Acta Sedimentologica Sinica, 24(5): 733-739(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2006.05.015 [32] Zhou, L., Cao, Y.C., 2010. The Application of Clastic Grain-Size Analysis to the Genetic Study of Sand Bodies in Upper Es4 Submember of Xin176 Area in Dongying Sag. Acta Geoscientica Sinica, 31(4): 563-573(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201004010.htm [33] 陈桥, 刘东艳, 陈颖军, 等, 2013. 粒级-标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比. 地球与环境, 41(3): 319-325. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201303016.htm [34] 蒋辉, 王开发, 张玉兰, 1981. 渤海西部晚更新世以来的孢粉组合及其古气候、古地理. 海洋湖沼通报, (4): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB198104006.htm [35] 蒋庆丰, 刘兴起, 沈吉, 2006. 乌伦古湖沉积物粒度特征及其古气候环境意义. 沉积学报, 24(6): 877-882. doi: 10.3969/j.issn.1000-0550.2006.06.014 [36] 成都地质学院陕北队, 1978. 沉积岩(物)粒度分析及其应用. 北京: 地质出版社, 31-143. [37] 沈吉, 汪勇, 羊向东, 等, 2006. 湖泊沉积记录的区域风沙特征及湖泊演化历史: 以陕西红碱淖湖泊为例. 科学通报, 51(1) : 87-92. doi: 10.3321/j.issn:0023-074X.2006.01.017 [38] 孙东怀, 安芷生, 苏瑞侠, 等, 2001. 古环境中沉积物粒度组分分离的数学方法及其应用. 自然科学进展, 11(3): 269-276. doi: 10.3321/j.issn:1002-008X.2001.03.008 [39] 孙千里, 周杰, 肖举乐, 2001. 岱海沉积物粒度特征及其古环境意义. 海洋地质与第四纪地质, 21(1): 93-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200101018.htm [40] 孙有斌, 高抒, 李军, 2003. 边缘海陆源物质中环境敏感粒度组分的初步分析. 科学通报, 48(1): 83-86. doi: 10.3321/j.issn:0023-074X.2003.01.021 [41] 童国榜, 柯曼红, 于淑凤, 1983. 河北平原第四纪孢粉组合及其地质意义. 海洋地质与第四纪地质, 3(4): 91-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198304014.htm [42] 汪海斌, 陈发虎, 张家武, 2002. 黄土高原西部地区黄土粒度的环境指示意义. 中国沙漠, 22(1): 21-26. doi: 10.3321/j.issn:1000-694X.2002.01.005 [43] 王强, 2002. 晚新生代以来华北断块板内环境变迁动力学. 前寒武纪第四纪地质文集. 北京: 地质出版社, 171: 182. [44] 王艳, 2000. 渤海湾曹妃甸晚更新世末期以来古植被与古气候演变序列. 海洋地质与第四纪地质, 20(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002017.htm [45] 肖国桥, 郭正堂, 陈宇坤, 等, 2008. 渤海湾西岸BZ1钻孔的磁性地层学研究. 第四纪研究, 28(5): 909-916. doi: 10.3321/j.issn:1001-7410.2008.05.014 [46] 肖国强, 杨吉龙, 赵长荣, 等, 2014. 天津滨海地区G2孔磁性地层年代及其构造指示. 地质通报, 33(10): 1642-1650. doi: 10.3969/j.issn.1671-2552.2014.10.024 [47] 肖尚斌, 李安春, 2005. 东海内陆架泥区沉积物的环境敏感粒度组分. 沉积学报, 23(1): 122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016 [48] 徐方建, 李安春, 万世明, 等, 2009. 东海内陆架泥质区中全新世环境敏感粒度组分的地质意义. 海洋学报, 31(3): 95-102. doi: 10.3321/j.issn:0253-4193.2009.03.011 [49] 徐杰, 冉勇康, 单新建, 等, 2004. 渤海海域第四系发育概况. 地震地质, 26(1): 24-32. doi: 10.3969/j.issn.0253-4967.2004.01.003 [50] 徐树建, 2007. 风成沉积物环境敏感粒度指标的提取及意义. 干旱区资源与环境, 21(3): 95-98. doi: 10.3969/j.issn.1003-7578.2007.03.020 [51] 阎玉忠, 王宏, 李凤林, 等, 2006. 渤海湾西岸BQ1孔揭示的沉积环境与海面波动. 地质通报, 25(3): 357-382. doi: 10.3969/j.issn.1671-2552.2006.03.006 [52] 郑国璋, 岳乐平, 何军锋, 等, 2006. 疏勒河下游安西古沼泽全新世沉积物粒度特征及其古气候环境意义. 沉积学报, 24(5): 733-739. doi: 10.3969/j.issn.1000-0550.2006.05.015 [53] 周磊, 操应长, 2010. 碎屑颗粒粒度分析在东营凹陷辛176块沙四上亚段砂体成因研究中的应用. 地球学报, 31(4): 563-573. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004010.htm