Geological, Geochemical Characteristics of Hongshan Pluton: Constraint for Lower Crust of West Junggar, Xinjiang
-
摘要: 准噶尔盆地基底性质历年来一直存在争议, 而花岗岩地球化学特征对下地壳性质具有指示意义.研究发现, 红山岩体的岩石类型主要为碱长花岗岩, 具有高SiO2、低Al2O3、偏碱性、准铝质、轻重稀土分馏相对明显且富集轻稀土、明显的Eu异常、富集Rb、Th、K等大离子亲石元素及Zr、Hf等高场强元素而强烈亏损Sr、Ba、P、Ti等元素的A型花岗岩特征, 形成于后碰撞的张性环境中.SIMS和LA-ICP-MS测试获得的岩体侵位年龄分别为315.7±2.4Ma(MSWD=0.82)和317.8±3.8Ma(MSWD=2.8), 指示该岩体为晚石炭世早期的产物, 与西准噶尔后碰撞岩浆活动的时限一致.红山碱长花岗岩的结晶温度为680~860℃, Lu-Hf、Sr-Nd同位素特征共同表明西准噶尔的基底是由亏损地幔演化而来的年轻地壳物质组成.Abstract: The basement of Junggar basin has been disputed for years, the geochemical characteristics of the granites are indicative of the lower crust, our research shows that, the Hongshan alkali feldspar granites from the West Junggar region, Xingjiang, are characterized by high SiO2, low Al2O3, high total alkali, metalumious, and LREE along with significant negative Eu anomalies, enrichment of large ion lithophile elements (such as Th, Rb and K) and high field-strength elements (such as Zr and Hf), strong depletion of Sr, Ba, P and Ti, showing geochemical features reminiscent of A-type granites. It can further infer that it was formed in post-collisional extensional environment. Zircon U-Pb dating by SIMS and LA-ICP-MS yield ages of 315.7±2.4Ma and 317.8±3.8Ma, suggesting that the pluton was emplaced at early Late Carboniferous, which is contemporary with the timing of the Late Paleozoic post-collisional magmatism in the region. Mineral thermometry implies that the pluton formed at a temperature from 680 to 860℃. On the other hand, zircon Lu-Hf and Sr-Nd isotopic features show a depleted mantle-like signature, suggesting that the magma was sourced from juvenile crust.
-
Key words:
- A-type granite /
- Late Carboniferous /
- post-collision /
- lower crust /
- Hongshan pluton /
- West Junggar /
- geochemistry
-
图 7 红山岩体K2O-SiO2关系和A/CNK-A/NK关系
数据来源于表 6;前人资料据王晓伟等(2011)、苏玉平等(2006)和Geng et al.(2009)
Fig. 7. Relation of K2O- SiO2 and relation of A/CNK-A/NK of Hongshan pluton
图 8 红山岩体稀土元素球粒陨石标准化配分曲线和微量元素比值蛛网图
MORB标准化值据Sun and Mcdonough(1989);球粒陨石标准化值据Taylor and McLennan(1985);样品数据来源于表 6、苏玉平等(2006)和Geng et al.(2009)
Fig. 8. Chondrite normalized REE distribution patterns and primitive mantle normalized trace element spider diagrams of Hongshan pluton
图 10 红山花岗岩SiO2-氧化物Harker关系
方框数据来源于Geng et al.(2009);圆圈数据来源于苏玉平等(2006);三角形数据来源于表 6
Fig. 10. Relation of SiO2-oxides of Hongshan granite
图 11 红山花岗岩Ce/Nb-Y/Nb和Nb-Y-Ce关系
底图据Eby(1992);样品数据来源于表 6、苏玉平等(2006)和Geng et al.(2009)
Fig. 11. Relations of Ce/Nb-Y/Nb and Nb-Y-Ce of Hongshan granite
图 12 红山岩体与其他岩体构造判别对比
底图据Pearce et al.(1984);样品数据来源于表 6、Chen and Arakawa(2005)、Geng et al.(2009)、庞振甲等(2010)和苏玉平等(2006)
Fig. 12. Discriminant between Hongshan pluton and other plutons
图 14 红山岩体侵位年龄t-εHf(t)关系
数据来源于表 6、Geng et al.(2009)和Tang et al.(2012)
Fig. 14. Relation of t-εHf(t) for Hongshan pluton
图 15 克拉玛依地区花岗岩侵位年龄t-εNd(t)关系
数据来源于伍建机和陈斌(2004)、Chen and Arakawa(2005)、苏玉平等(2006)、Geng et al.(2009)、贺敬博和陈斌(2011)和Tang et al.(2012)
Fig. 15. Relation of t-εNd(t) for the granites in Karamay area
表 1 碱长花岗岩中条纹长石电子探针分析结果(%)
Table 1. Electron probe analyses of perthites in the alkali feldspar granites (%)
样号 测点 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O 总量 48-2-1 客晶 67.54 0.00 19.36 0.21 0.02 0.00 0.74 10.74 0.20 98.83 主晶 65.16 0.02 17.69 0.13 0.00 0.00 0.03 0.59 15.93 99.55 48-2-2 客晶 66.58 0.02 20.12 0.15 0.00 0.00 1.49 10.64 0.24 99.24 主晶 65.20 0.00 17.80 0.11 0.00 0.00 0.03 1.35 14.69 99.18 48-2-3 客晶 66.69 0.00 20.05 0.15 0.01 0.00 1.36 10.34 0.20 98.81 主晶 65.18 0.00 17.83 0.14 0.00 0.00 0.02 1.30 14.79 99.26 20-1-3 客晶 67.17 0.02 20.04 0.11 0.01 0.00 1.47 10.50 0.16 99.47 主晶 65.07 0.00 17.81 0.14 0.00 0.00 0.07 1.45 14.74 99.27 20-1-8 客晶 67.01 0.00 19.96 0.11 0.00 0.01 1.40 10.57 0.30 99.38 主晶 98.79 0.02 0.01 0.02 0.00 0.01 0.00 0.00 0.01 98.84 48-1-2 客晶 66.78 0.02 19.90 0.18 0.00 0.00 1.25 10.50 0.26 98.91 主晶 65.11 0.02 17.77 0.22 0.00 0.00 0.01 1.02 14.76 98.90 48-1-6 客晶 66.58 0.01 19.99 0.15 0.00 0.01 1.50 10.36 0.16 98.75 主晶 64.20 0.00 17.87 0.04 0.01 0.01 0.03 0.33 16.17 98.65 26-1-7 客晶 67.07 0.00 19.83 0.12 0.00 0.00 1.30 10.56 0.14 99.03 主晶 65.76 0.00 18.00 0.05 0.02 0.00 0.09 2.45 12.82 99.18 22-1-5 客晶 67.95 0.02 19.48 0.17 0.00 0.00 0.64 10.79 0.22 99.26 主晶 65.04 0.02 17.45 0.12 0.00 0.01 0.12 1.16 14.69 98.61 样号 测点 Si Ti Al Cr Fe Mn Mg Ca Na K Ab An Or 48-2-1 客晶 2.99 0.00 1.01 0.01 0.00 0.00 0.03 0.92 0.01 2.99 95.21 3.61 1.17 主晶 3.02 0.00 0.97 0.01 0.00 0.00 0.00 0.05 0.94 3.02 5.30 0.14 94.56 48-2-2 客晶 2.94 0.00 1.05 0.01 0.00 0.00 0.07 0.91 0.01 2.94 91.57 7.07 1.36 主晶 3.02 0.00 0.97 0.00 0.00 0.00 0.00 0.12 0.87 3.02 12.25 0.13 87.62 48-2-3 客晶 2.95 0.00 1.05 0.01 0.00 0.00 0.06 0.89 0.01 2.95 92.12 6.70 1.18 主晶 3.02 0.00 0.97 0.01 0.00 0.00 0.00 0.12 0.87 3.02 11.78 0.10 88.13 20-1-3 客晶 2.96 0.00 1.04 0.00 0.00 0.00 0.07 0.90 0.01 2.96 91.99 7.10 0.91 主晶 3.02 0.00 0.97 0.01 0.00 0.00 0.00 0.13 0.87 3.02 12.95 0.33 86.73 20-1-8 客晶 2.96 0.00 1.04 0.00 0.00 0.00 0.07 0.90 0.02 2.96 91.59 6.72 1.69 主晶 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 43.18 0.00 56.82 48-1-2 客晶 2.96 0.00 1.04 0.01 0.00 0.00 0.06 0.90 0.01 2.96 92.44 6.08 1.48 主晶 3.02 0.00 0.97 0.01 0.00 0.00 0.00 0.09 0.87 3.02 9.46 0.05 90.48 48-1-6 客晶 2.95 0.00 1.04 0.01 0.00 0.00 0.07 0.89 0.01 2.95 91.75 7.33 0.92 主晶 3.01 0.00 0.99 0.00 0.00 0.00 0.00 0.03 0.97 3.01 2.99 0.14 96.88 26-1-7 客晶 2.96 0.00 1.03 0.00 0.00 0.00 0.06 0.90 0.01 2.96 92.87 6.30 0.83 主晶 3.02 0.00 0.97 0.00 0.00 0.00 0.00 0.22 0.75 3.02 22.38 0.43 77.18 22-1-5 客晶 2.99 0.00 1.01 0.01 0.00 0.00 0.03 0.92 0.01 2.99 95.61 3.13 1.25 主晶 3.03 0.00 0.96 0.00 0.00 0.00 0.01 0.11 0.87 3.03 10.67 0.62 88.70 表 2 碱长花岗岩中斜长石电子探针分析结果(%)
Table 2. Electron probe analyses of plagioclases in the alkali feldspar granites (%)
样号 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O 总量 48-2-7-1 66.75 0.00 19.89 0.02 0.15 0.00 0.00 1.51 10.10 0.39 98.81 48-2-7-2 66.81 0.01 20.01 0.00 0.15 0.00 0.00 1.47 10.02 0.47 98.94 48-2-9-1 66.43 0.00 19.81 0.02 0.16 0.03 0.02 1.41 10.20 0.45 98.51 20-1-7-1 67.13 0.03 19.84 0.00 0.16 0.00 0.00 1.34 10.55 0.43 99.46 26-1-2-3 67.41 0.01 19.31 0.05 0.07 0.01 0.00 0.78 11.08 0.14 98.87 样号 Si Ti Al Cr Fe Mn Mg Ca Na K Ab An Or 48-2-7-1 2.96 0.00 1.04 0.00 0.01 0.00 0.00 0.07 0.87 0.02 90.25 7.47 2.29 48-2-7-2 2.96 0.00 1.04 0.00 0.01 0.00 0.00 0.07 0.86 0.03 89.93 7.28 2.79 48-2-9-1 2.96 0.00 1.04 0.00 0.01 0.00 0.00 0.07 0.88 0.03 90.50 6.90 2.60 20-1-7-1 2.96 0.00 1.03 0.00 0.01 0.00 0.00 0.06 0.90 0.02 91.15 6.39 2.46 26-1-2-3 2.98 0.00 1.01 0.00 0.00 0.00 0.00 0.04 0.95 0.01 95.47 3.73 0.80 表 3 碱长花岗岩中角闪石电子探针分析结果(%)
Table 3. Electron probe analyses of hornblendes in the alkali feldspar granites (%)
样号 48-2-4 48-2-5 48-2-11 20-1-1 20-1-1 20-1-2 20-1-3 20-1-4 20-1-5 20-1-7 20-1-9 20-1-10 SiO2 44.40 43.78 43.63 44.95 45.46 45.29 45.28 45.69 45.51 44.61 45.49 44.82 TiO2 1.54 1.36 1.36 1.58 1.41 1.54 1.54 1.57 1.29 1.50 1.56 1.46 Al2O3 5.92 6.62 6.72 5.73 5.74 5.71 5.93 5.73 5.55 5.71 5.85 5.79 FeO 26.86 26.72 25.92 24.95 24.58 23.73 24.87 24.65 25.69 26.02 24.96 25.54 MnO 1.17 1.02 1.15 0.97 0.91 0.92 1.07 0.98 1.15 1.17 0.93 1.08 MgO 4.92 4.93 4.64 6.05 6.74 6.70 6.14 6.57 6.22 5.57 6.68 6.22 CaO 9.76 10.13 9.91 9.59 9.71 9.53 9.40 9.58 9.12 9.74 9.65 9.60 Na2O 2.13 2.16 2.24 2.19 2.21 2.27 2.34 2.23 2.13 2.31 2.31 2.39 K2O 0.77 0.93 0.78 0.73 0.70 0.73 0.73 0.70 0.63 0.71 0.74 0.71 Cr2O3 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 总量 97.46 97.65 96.35 96.74 97.45 96.42 97.30 97.72 97.30 97.34 98.16 97.62 Si(T) 6.97 6.88 6.93 7.03 7.03 7.06 7.03 7.04 7.06 6.99 7.00 6.98 AlⅣ(T) 1.03 1.12 1.07 0.97 0.97 0.94 0.97 0.96 0.94 1.01 1.00 1.02 Total T 8 8 8 8 8 8 8 8 8 8 8 8 AlⅥ(C) 0.07 0.10 0.19 0.09 0.07 0.11 0.11 0.09 0.07 0.04 0.05 0.04 Ti(C) 0.18 0.16 0.16 0.19 0.16 0.18 0.18 0.18 0.15 0.18 0.18 0.17 Cr(C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe3+(C) 0.28 0.23 0.17 0.27 0.31 0.24 0.29 0.30 0.42 0.25 0.31 0.24 Mg(C) 1.15 1.15 1.10 1.41 1.55 1.56 1.42 1.51 1.44 1.30 1.53 1.44 Fe2+(C) 3.32 3.35 3.38 3.05 2.90 2.91 3.00 2.92 2.92 3.23 2.92 3.10 Mn(C) 0.07 0.07 0.11 0.05 0.03 0.05 0.06 0.04 0.00 0.07 0.02 0.01 Total C 5 5 5 5 5 5 5 5 5 5 5 5 Mn(B) 0.08 0.06 0.05 0.08 0.09 0.07 0.08 0.09 0.15 0.09 0.10 0.13 Fe2+(B) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca(B) 1.64 1.70 1.69 1.61 1.61 1.59 1.56 1.58 1.52 1.64 1.59 1.60 Na(B) 0.28 0.23 0.27 0.32 0.30 0.34 0.35 0.33 0.34 0.28 0.31 0.27 Total B 2 2 2 2 2 2 2 2 2 2 2 2 Na(A) 0.37 0.43 0.42 0.35 0.36 0.35 0.35 0.34 0.30 0.43 0.38 0.45 K(A) 0.23 0.27 0.23 0.21 0.20 0.21 0.21 0.20 0.18 0.21 0.21 0.21 Total A 0.60 0.70 0.66 0.56 0.56 0.56 0.56 0.54 0.49 0.64 0.59 0.66 Total 15.60 15.70 15.66 15.56 15.56 15.56 15.56 15.54 15.49 15.64 15.59 15.66 Fe3+# 0.08 0.06 0.05 0.08 0.10 0.08 0.09 0.09 0.13 0.07 0.10 0.07 Fe# 0.76 0.76 0.76 0.70 0.67 0.67 0.70 0.68 0.70 0.73 0.68 0.70 注:Fe3+#= Fe3+/(Fe3++Fe2+),Fe#= Fetotal/(Fetotal+Mg). 表 4 红山花岗岩锆石LA-ICP-MS分析结果
Table 4. U-Pb isotopic analyses for zircons from Hongshan granite by LA-ICP-MS
样品分析点 含量(10-6) Th/U 同位素比值 年龄(Ma) Pb U Th 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ PM008-26-1-1 71 354 210 0.57 0.05172±0.00280 0.35474±0.01856 0.05062±0.00078 272±124 308±14 315±5 PM008-26-1-2 57 367 162 0.43 0.05854±0.00310 0.39994±0.02096 0.05009±0.00076 550±115 342±15 321±5 PM008-26-1-3 60 421 166 0.38 0.05742±0.00287 0.40102±0.01964 0.05103±0.00078 509±109 342±14 311±4 PM008-26-1-4 91 649 242 0.36 0.05435±0.00243 0.36859±0.01606 0.04935±0.00072 387±100 319±12 322±5 PM008-26-1-5 44 274 123 0.43 0.06192±0.00372 0.42519±0.02545 0.05118±0.00088 672±128 360±18 336±5 PM008-26-1-6 79 517 214 0.40 0.05525±0.00263 0.40835±0.01959 0.05347±0.00079 433±101 348±14 321±6 PM008-26-1-7 43 336 108 0.31 0.05107±0.00365 0.35762±0.02298 0.05112±0.00102 243±194 310±17 319±4 PM008-26-1-8 103 772 281 0.35 0.05401±0.00227 0.37491±0.01485 0.05071±0.00060 372±94 323±11 326±4 PM008-26-1-9 101 566 275 0.47 0.05224±0.00235 0.37283±0.01612 0.05180±0.00067 295±102 322±12 309±5 PM008-26-1-10 87 581 237 0.39 0.05143±0.00288 0.35115±0.02042 0.04902±0.00074 261±130 306±15 304±7 PM008-26-1-11 73 510 201 0.38 0.05249±0.00441 0.34692±0.02868 0.04827±0.00116 306±193 302±22 311±5 PM008-26-1-12 75 491 203 0.40 0.05033±0.00366 0.33738±0.02302 0.04949±0.00085 209±170 295±17 319±5 PM008-26-1-13 58 369 157 0.41 0.05668±0.00305 0.38871±0.02012 0.05069±0.00081 480±120 333±15 330±4 PM008-26-1-14 63 440 164 0.36 0.05873±0.00295 0.42112±0.02031 0.05253±0.00073 567±111 357±15 321±5 PM008-26-1-15 48 304 135 0.43 0.05882±0.00340 0.40665±0.02219 0.05110±0.00085 561±128 346±16 301±6 PM008-26-1-16 90 631 248 0.38 0.06092±0.00493 0.40115±0.03202 0.04784±0.00101 635±373 342±23 317±4 PM008-26-1-17 119 678 352 0.50 0.05310±0.00242 0.36890±0.01672 0.05033±0.00059 332±99 319±12 314±4 PM008-26-1-18 52 332 150 0.44 0.06469±0.00403 0.43506±0.02476 0.04985±0.00066 765±136 367±18 308±6 PM008-26-1-19 67 506 206 0.39 0.05937±0.00412 0.38829±0.02301 0.04901±0.00094 589±145 333±17 315±5 表 5 红山花岗岩锆石SIMS分析结果表
Table 5. U-Pb isotopic analyses for zircons from Hongshan granite by SIMS
样品分析点 含量(10-6) Th/U 同位素比值 年龄(Ma) Pb U Th 207Pb/206Pb±1σ 206Pb/238U±1σ 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ PM008-26-1-1 16 272 119 0.44 0.05409±0.02615 0.05035±0.01520 335±66 319±9 316±5 PM008-26-1-2 12 195 90 0.46 0.05484±0.03683 0.05047±0.01504 351±92 321±12 317±5 PM008-26-1-3 10 163 74 0.46 0.05047±0.03982 0.05145±0.01527 217±90 311±12 323±5 PM008-26-1-4 9 157 72 0.46 0.05288±0.05272 0.04949±0.01512 324±116 313±15 311±5 PM008-26-1-5 5 75 30 0.39 0.05025±0.05200 0.05063±0.01527 207±116 305±14 318±5 PM008-26-1-6 16 254 134 0.53 0.04958±0.03237 0.05063±0.01518 176±74 302±9 318±5 PM008-26-1-7 21 365 118 0.32 0.05264±0.02287 0.05005±0.01505 266±59 309±8 314±5 PM008-26-1-8 20 348 123 0.36 0.05359±0.02904 0.04977±0.01504 319±70 314±10 313±5 PM008-26-1-9 10 163 70 0.43 0.05586±0.03334 0.04989±0.01513 447±72 330±10 314±5 PM008-26-1-10 18 310 114 0.37 0.05320±0.02941 0.04982±0.01507 281±78 309±10 313±5 PM008-26-1-11 15 253 97 0.39 0.05457±0.02661 0.05180±0.01502 395±59 334±9 326±5 PM008-26-1-12 11 194 65 0.34 0.05264±0.03157 0.05012±0.01505 254±84 308±11 315±5 PM008-26-1-13 13 219 79 0.36 0.05354±0.02932 0.04992±0.01579 302±76 312±10 314±5 PM008-26-1-14 8 138 49 0.36 0.04914±0.04357 0.04993±0.01513 155±99 296±12 315±5 PM008-26-1-15 6 104 29 0.28 0.05495±0.04340 0.04994±0.01612 295±129 308±16 309±5 表 6 红山岩体碱长花岗岩主微量元素分析结果
Table 6. Major and trace elements of the alkali feldspar granites from Hongshan pluton
样品号 PM26-17-1 PM26-22-1 PM26-26-1 PM26-50-1 PM26-92-1 PM26-99-1 SiO2 72.64 71.72 73.18 72.06 73.05 71.14 TiO2 0.33 0.37 0.33 0.35 0.34 0.34 Al2O3 12.90 12.83 12.84 13.14 12.55 13.36 Fe2O3 1.29 2.31 1.26 1.85 0.98 1.50 FeO 1.47 1.33 1.53 1.38 1.78 1.58 FeOT 2.63 3.41 2.66 3.04 2.66 2.93 MnO 0.08 0.11 0.07 0.07 0.08 0.08 MgO 0.41 0.57 0.38 0.43 0.48 0.46 CaO 1.11 1.23 1.02 0.99 1.29 1.13 Na2O 4.62 4.58 4.43 4.53 4.32 5.08 K2O 4.29 4.07 4.15 4.28 4.18 4.26 P2O5 0.06 0.08 0.06 0.06 0.07 0.06 H2O+ 0.45 0.49 0.34 0.62 0.61 0.51 CO2 0.18 0.09 0.09 0.13 0.09 0.02 LOI 0.5 0.62 0.51 0.49 0.55 0.35 Total 100.33 100.40 100.19 100.38 100.37 99.87 A/NK 0.90 0.91 0.94 0.95 0.90 0.89 A/CNK 1.05 1.07 1.09 1.09 1.08 1.03 Rb 77.00 79.00 91.00 100.00 92.00 91.00 Sr 86.00 82.00 75.00 76.00 84.00 72.00 Ba 560.00 537.00 532.00 504.00 533.00 523.00 U 1.81 2.05 1.83 2.44 3.04 2.27 Th 8.46 9.65 9.70 9.98 8.14 10.50 Nb 13.20 15.50 14.10 17.00 15.80 15.40 Ta 0.86 1.04 0.93 1.17 1.09 1.02 Zr 409.00 405.00 372.00 405.00 379.00 427.00 Hf 9.48 9.83 8.92 9.87 9.23 10.2 Ga 20.80 21.30 21.10 21.90 20.70 21.40 Y 42.80 51.10 45.80 53.90 56.10 51.70 Zn 79.00 74.80 54.10 64.80 50.40 80.50 La 31.70 24.00 38.60 22.50 18.30 36.10 Ce 72.30 58.60 84.40 57.10 49.80 81.30 Pr 8.75 8.00 9.95 7.58 7.25 9.95 Nd 34.70 33.30 38.00 32.40 32.80 39.50 Sm 7.60 8.23 7.83 7.93 8.40 8.68 Eu 0.64 0.59 0.65 0.62 0.63 0.65 Gd 6.91 7.90 7.13 7.65 8.04 7.76 Tb 1.19 1.38 1.22 1.36 1.48 1.39 Dy 7.55 8.98 7.58 8.90 9.27 8.63 Ho 1.49 1.77 1.57 1.79 1.91 1.79 Er 4.48 5.32 4.71 5.58 5.83 5.30 Tm 0.68 0.80 0.74 0.86 0.87 0.80 Yb 4.45 5.51 4.88 5.67 5.82 5.45 Lu 0.67 0.84 0.76 0.88 0.90 0.86 ΣREE 183.09 165.25 207.98 160.89 151.33 208.20 LREE 155.67 132.74 179.39 128.19 117.22 176.21 HREE 27.42 32.52 28.59 32.70 34.12 31.99 LREE/HREE 5.68 4.08 6.27 3.92 3.44 5.51 LaN/YbN 8.69 5.31 9.66 4.85 3.84 8.07 δEu 0.26 0.22 0.26 0.24 0.23 0.24 δCe 1.00 1.00 0.98 1.03 1.04 0.99 TZr(℃) 855.44 853.16 852.68 859.74 848.23 854.12 注:检测单位为国土资源部武汉矿产资源监督检测中心;氧化物含量单位为%;稀土和微量含量单位为10-6. 表 7 红山花岗岩Lu-Hf同位素数据
Table 7. Lu and Hf isotopic data of Hongshan granite
样号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) 1σ εHf(t) 1σ TDM1(Ma) TDM2(Ma) fLu/Hf PM008-26-1-1 0.063436 0.001691 0.283017 8.7 1.4 15.3 1.5 339 354 -0.95 PM008-26-1-2 0.069765 0.001871 0.282983 7.4 1.1 14.0 1.2 391 435 -0.94 PM008-26-1-3 0.055011 0.001629 0.283044 9.6 0.8 16.3 0.8 299 290 -0.95 PM008-26-1-4 0.053531 0.001441 0.283058 10.1 0.8 16.8 0.8 278 257 -0.96 PM008-26-1-5 0.038130 0.001032 0.282996 7.9 0.8 14.7 0.8 363 393 -0.97 PM008-26-1-6 0.040770 0.001107 0.283003 8.2 0.8 14.9 0.8 354 378 -0.97 PM008-26-1-7 0.072386 0.001963 0.283028 9.1 0.9 15.6 1.0 325 331 -0.94 PM008-26-1-8 0.058062 0.001558 0.283013 8.5 0.8 15.2 0.9 343 360 -0.95 PM008-26-1-9 0.036057 0.000979 0.283018 8.7 0.8 15.5 0.8 331 341 -0.97 PM008-26-1-10 0.040014 0.001080 0.283019 8.7 0.7 15.5 0.8 331 341 -0.97 PM008-26-1-11 0.043166 0.001192 0.283010 8.4 0.8 15.2 0.8 344 362 -0.96 PM008-26-1-12 0.049007 0.001327 0.283009 8.4 0.8 15.1 0.9 347 367 -0.96 PM008-26-1-13 0.091243 0.002479 0.283028 9.1 0.9 15.5 0.9 330 340 -0.93 PM008-26-1-14 0.047333 0.001269 0.282998 8.0 0.8 14.7 0.8 362 391 -0.96 表 8 红山岩体年龄及相关信息
Table 8. The geochronological information of Hongshan pluton
岩性 年龄(Ma) 1σ 方法 数据来源 碱长花岗岩 244 - 锆石U-Pb 金成伟和张秀棋,1993 花岗岩 297 12 LA-ICP-MS Chen and Jahn, 2004 碱长花岗岩 301 4 LA-ICP-MS 苏玉平等,2006 黑云母二长花岗岩 304 1 LA-ICP-MS 冯乾文等,2012 闪长质岩墙 304 1 LA-ICP-MS 冯乾文等,2012 碱长花岗岩 305 4 SHRIMP 徐新等,2006 碱性花岗岩 309 - LA-ICP-MS 李永军等,2012 二长花岗岩 309.3 3.8 LA-ICP-MS 韩鑫等,2013 碱长花岗岩 315.7 2.4 SIMS 本文 碱长花岗岩 317.8 3.8 LA-ICP-MS 本文 -
[1] Anderson, J.L., Smith, D.R., 1995. The Effects of Temperature and fO2 on the Al-in-Hornblende Barometer. American Mineralogist, 80(5-6): 549-559. doi: 10.2138/am-1995-5-614 [2] Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. doi: 10.1016/j-gea.2004.09.019 [3] Chen, B., Jahn, B.M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(2004): 691-703. doi: 10.1016/S1367-9120(03)00118-4 [4] Chen, J.F., Han, B.F., Ji, J.Q., et al., 2010. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Nothern West Junggar, North Xinjiang, China. Lithos, 115(1-4): 137-152. doi: 10.1016/j.lithos.2009.11.014 [5] Clemens, J.D., Holloway, J.R., White, J.A.R., 1986. Origin of an A-Type Granites: Experimental Constrains. American Mineralogist, 71: 317-324. http://www.researchgate.net/publication/279898234_origin_of_an_a-type_granite_experimental_constraints [6] Davoudian, A.R., Hamedani, A., Shabanian, N., et al., 2007. Petrological and Geochemical Constraints on the Evolution of the Cheshmeh-Sefid Granitoid Complex of Golpayegan in the Sanandaj-Sirjan Zone, Iran. Neues Jahrbuch üfr Mineralogie-Abhandlungen, 184: 117-129. doi: 10.1127/0077-7757/2007/0085 [7] Eby, G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20: 641-644. doi:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.C0:2 [8] Feng, Q.W., Li, J.Y., Liu, J.F., et al., 2012. Ages of the Hongshan Granite and Intruding Dioritic Dyke Swarms, in Western Junggar, Xinjiang, NW China: Evidence from LA-ICP-MS Zircon Chronology. Acta Petrologica Sinica, 28(9): 2935-2949 (in Chinese with English abstract). http://www.oalib.com/paper/1474568 [9] Flavien, C., Dominique, C., Michel, F., 2011. New Constraints on the Pre-Permian Continental Crust Growth of Central Asia(West Junggar, China)by U-Pb and Hf Isotopic Data from Detrital Zircon. Terra Nova, 24(3): 189-198. doi: 10.1111/j.1365-3121.2011.01052.x [10] Gao, R., Xiao, L., Wang, G.C., et al., 2013. Paleozoic Magmatism and Tectonic Setting in West Junggar. Acta Petrologica Sinica, 29(10): 3413-3434(in Chinese with English abstract). http://www.researchgate.net/publication/285747232_Paleozoic_Magmatism_and_Tectonic_Setting_in_West_Junggar [11] Geng, H.Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction?Chemical Geology, 266(2009): 364-389. doi: 10.1016/j.chemgeo.2009.07.001 [12] Giret, A., Boin, B., Leger, J., 1980. Amphiboles Compositional Trends in Oversaturated and Undersaturated Alkaline Plutonic Ring—Composition. The Canadian Mineralogist, 18(4): 481-495. http://canmin.geoscienceworld.org/content/18/4/481 [13] Han, B.F., He, G.Q., Wang, S.G., 1999. Post-Collisional Mantle-Derived Magmatism, Underplatism and Basin Basement Characteristics. Science in China (Series D), 29(1): 16-21(in Chinese). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020416269755.html [14] Han, B.F., He, G.Q., Wang, S.G., et al., 1998. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xinjiang. Geological Review, 44(4): 396-406(in Chinese with English abstract). http://www.researchgate.net/publication/312442201_Postcollisional_mantle-derived_magmatism_and_vertical_growth_of_the_continental_crust_in_North_Xinjiang [15] Han, B.F., Ji, J.Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China(PartⅠ): Timing of Post-Collisional Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086(in Chinese with English abstract). http://www.oalib.com/paper/1472627 [16] Han, X., Yan, J., Wang, Y.B., et al., 2013. LA-ICP-MS U-Pb Zircon Dating and Its Geological Implication of Hongshan Granite in West Junggar. Liaoning Chemical Industry, 42(2): 139-142(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LNHG201302010.htm [17] He, J.B., Chen, B., 2011. Petrogenesis of Karamay Plutons in the West Junggar: Constraints from Geochronology, Petrology and Geochemistry. Earth Science Frontiers, 18(2): 191-211(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201102023.htm [18] Helmy, H.M., Ahmed, A.F., Mahallawi, M.M.E., et al., 2004. Pressure, Temperature and Oxygen Fugacity Conditions of Calc-Alkaline Granitoids, Eastern Desert of Egypt, and Tectonic Implications. Journal of African Earth Sciences, 8(2004): 255-268. doi: 10.1016/j.jafrearsci.2004.01.002 [19] Hu, A.Q., Wei, G.J., 2003. A Review of Ages of Basement Rocks from Junggar Basin in Xinjiang, China—Based on Studies of Geochronology. Xinjiang Geology, 21(4): 398-406 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200304004.htm [20] Huang, M.X., 1988. A Correction to Sotrmer's Two-Feldspar Geothermometer Mathematical Expressions. Geological Review, 34(3): 282-283(in Chinese). [21] Jahn, B.M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100. doi: 10.1144/GSL.SP.2004.226.01.05 [22] Jiang, Y.D., 1984. A Preliminary Approach to the Basement of Junggar District. Xinjiang Geology, 2(1): 11-16(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI198401001.htm [23] Jin, C.W., Zhang, X.Q., 1993. A Geochronology and Geneses of the Western Junggar Granitoids, Xinjiang, China. Scientia Geologica Sinica, 28(1): 28-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX199301003.htm [24] King, P.L., White, A.J.R., Chappell, B.W., 1997. Characterization and Origin of Aluminous A-Type Granites of the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38: 371-391. doi: 10.1093/petroj/38.3.371 [25] Leake, B., Woolley, A., Arps, C., 1971. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35(1997): 219-246. [26] Li, Y.J., Wang, R., Li, W.D., et al., 2012. Discovery of the Porphyry Copper-Molybdenum Deposits and Prospecting Reflections in Southern Darbut Tectonic Magmatic Belts, West Junggar, China. Acta Petrologica Sinica, 28(7): 2009-2014(in Chinese with English abstract). http://www.researchgate.net/publication/295635480_Discovery_of_the_porphyry_copper-molybdenum_deposits_and_prospecting_reflections_in_southern_Darbut_teoctonic_magmatic_belts_West_Junggar_China [27] Liu, C.S., Chen, X.M., Chen, P.R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for A Type Rock Suites. Geological Journal of China Universities, 9(4): 573-591(in Chinese with English abstract). http://www.researchgate.net/publication/292052945_Subdivision_discrimination_criteria_and_genesis_for_A-type_rock_suites [28] Liu, X.M., 2000. Tectonic Environment of Post-Collisional Magmatic Rocks and Their Features. Progress in Precambrian Research, 23(2): 121-127(in Chinese). http://www.researchgate.net/publication/308168729_Tectonic_setting_and_characteristics_of_post-collisional_igneous_rocks [29] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In-Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [30] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [31] Miller, C.F., McDowell, S.M., et al., 2003. Hot and Cold Granites Implications of Ziron Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2 [32] Pang, Z.J., Li, L.J., Zhao, Y.M., et al., 2010. The Determination and Its Significance of Akebasitao Aluminous A-Type Granites in West Junggar, Xinjiang. Xinjiang Geology, 28(2): 119-124(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-XJDI201002004.htm [33] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 [34] Qiu, J.S., Wang, D.Z., Kanisawa, S., et al., 2000. Geochemistry and Petrogenesis of Aluminous A-Type Granites in the Coastal Area of Fujian Province. Geochimica, 29(4): 313-321(in Chinese with English abstract). http://www.researchgate.net/publication/291983808_Geochemistry_and_petrogenesis_of_aluminous_A-type_granites_in_the_coastal_area_of_Fujian_Province [35] Qiu, J.X., Lin, J.Q., Wang, R.J., 1991. Petrochemistry. Geological Publishing House, Beijing, 210 (in Chinese). [36] Roberts, M.P., Clemens, J.D., 1993. Origin of High-Potassium, Calc-Alkaline, I-Type Granitoids. Geology, 21(9): 825-828. doi:10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO:2 [37] Sengör, A.M.C., Natalin, B.A., Burtman, V.S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364: 299-307. doi: 10.1038/364299a0 [38] Shang, Z.C., Wang, H.T., Zhang, W., et al., 2012. Geochronology and Tectonic Implications of the Granites in West Junggar, Xinjiang. Gansu Geology, 21(1): 1-5, 80(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSDZ201201003.htm [39] Su, Y.P., Tang, H.F., Hou, G.S., et al., 2006. Geochemistry of Aluminous A-Type Granites along Darabut Tectonic Belt in West Junggar, Xinjiang. Geochimica, 35(1): 55-67(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200601006.htm [40] Sun, S., S., McDonough, W., F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [41] Tang, G.J., Qiang, W., Wyman, D.A., et al., 2012. Late Carboniferous High εNd(t)-εHf(t) Granitoids, Enclaves and Dikes in Western Junggar, NW China: Ridge-Subduction-Related Magmatism and Crustal Growth. Lithos, 140-141(2012): 86-102. doi: 10.1016/j.lithos.2012.01.025 [42] Taylor, S., R., Mclennan, S., M., 1985. The Continental Crust: Its Composition and Evolution. Oxford, Blackwell Scientific Publications, 312. doi: 10.1002/gj.3350210116 [43] Wang, T., Liu, S., Hu, R.Z., et al., 2009. Elemental Geochemistry and Petrogenesis of A-Type Granites in the Sulu Orogen. Journal of Jilin University(Earth Science Edition), 39(4): 676-688(in Chinese with English abstract). [44] Wang, X.W., Yang, C.X., Liu, J.X., et al., 2011. Geochemistry and Tectonic Significance of A-Type Granite in West Junggar. Gansu Geology, 20(2): 11-19(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSDZ201102004.htm [45] Wang, Y., 2008. Petrogenesis of the Jurassic Aluminous A-Type Granites in the Nanling Area, South China and Its Constraint on Paleo-Geotherm. Geotectonica et Metallogenia, 32(3): 365-381(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK200803016&dbcode=CJFD&year=2008&dflag=pdfdown [46] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X [47] Whitney, J.A., Stormer, J.C.J., 1977. The Distribution of NaAlSi3O8 between Coexisting Microcline and Plagioclase and Its Effect on Geothermometric Calculations. American Mineralogist, 62: 687-691. http://www.researchgate.net/publication/241911471_The_distribution_of_NaAlSi3O8_between_coexisting_microcline_and_plagioclase_and_its_effect_on_geothermometric_calculations [48] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671 [49] Wu, J.J., Chen, B., 2004. Trace Element and Nd-Sr Isotope Characteristics of the Pose-Collisional Granitoids from Miaoergou West Junggar, and Implication for Petrogenesis. Xinjiang Geology, 22(1): 29-35(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1367912003001184 [50] Wu, S.P., Wang, M.Y., Qi, J.K., 2007. Present Situation of Researches on A-Type Granites: A Review. Acta Petrologica et Mineralogica, 26(1): 57-66(in Chinese with English abstract). http://www.researchgate.net/publication/306123021_Present_situation_of_researches_on_A-type_granites_A_review [51] Wu, Y.B., Zheng, Y.F., 2004. Study on the Zircon Genetic Mineralogy and Its Restrictions on U-Pb Dating. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [52] Xiao, W.J., Han, C.M., Yuan, C., et al., 2006. Unique Carbonifeforus-Permian Tectonic-Metallogenic Framework of Northern Xinjiang(NW China): Constraints for the Tectonics of the Southern Paleoasian Domain. Acta Petrologica Sinica, 22(5): 1062-1076(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026539172 [53] Xiao, X.C., Tang, Y.Q., Feng, Y. M, et al., 1992. Tectonic Evolution of the Northern Xinjiang and Its Adjacent Regions. Geological Publishing House, Beijing, 94-95(in Chinese). [54] Xu, X., He, G.Q., Li, H.Q., et al., 2006. Basic Characteristics of the Karamay Ophiolitic Mélange, Xinjiang, and Its Zircon SHRIMP Dating. Geology in China, 33(3): 470-475(in Chinese with English abstract). http://www.researchgate.net/publication/279580642_Basic_characteristics_of_the_Karamay_ophiolitic_mlange_Xinjiang_and_its_zircon_SHRIMP_dating [55] Yan, Q.S., Shi, X.F., Gao, J.J., et al., 2012. Mineralogical Characteristics of Granitic Rocks from the Nansha Block(South China Sea)and Its Implications for Magmatic Process. Acta Mineralogica Sinica, 32(1): 131-138(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB201201017.htm [56] Yang, D.B., Xu, W.L., Wang, Q.H., et al., 2007. Petrogenesis of the Mesozoic Granite in Bengbu Uplift: Constraints from Zircon Hf Isotope. Earth Science—Journal of China University of Geosciences, 23(2): 381-392(in Chinese with English abstract). http://www.researchgate.net/publication/279623970_Petrogenesis_of_the_Mesozoic_granite_in_Bengbu_uplift_Constraints_from_zircon_Hf_isotope [57] Yang, F., 2012. The Basement Property and Evolution of the Northern Junggar Basin by In-Situ Analysis of Zircon U-Pb Chronology and Trace Element (Dissertation). Northwest University, Xi'an, 77-79(in Chinese with English abstract). [58] Yang, G., Xiao, L., Wang, G.C., et al., 2015. Geochronology, Geochemistry and Zircon Lu-Hf Study of Granites in Western Section of Xiemisitai Area, Western Junggar. Earth Science—Journal of China University of Geosciences, 40(3): 548-562(in Chinese with English abstract). doi: 10.3799/dqkx.2015.043 [59] Yang, M., Wang, J.L., Wang, J.Q., et al., 2012. Studies on Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes of Granite in Wangfeng Area at the Northern Margin of Middle Tianshan, Xinjiang. Acta Petrologica Sinica, 28(7): 2121-2213(in Chinese with English abstract). [60] Yang, Z.R., Gu, H.M., 1987. The Basement Property and Evolution of the Junggar Basin. Xinjiang Petroleum Geology, 8(2): 37-45(in Chinese). [61] Yin, J.Y., Yuan, C., Wang. Y.J., et al., 2011. Magmatic Records on the Late Paleozoic Tectonic Evolution of Western Junggar, Xinjiang. Geotectonica et Metallogenia, 35(2): 278-192 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201102014.htm [62] Zhang, J.E., Xiao, W.J., Han, C.M., et al., 2010. Magmatism of Mid-Oceanic Ridge Subduction during Carboniferous in Western Junggar: Evidence from Maliya Ophiolite. Acta Petrologica Sinica, 26(11): 3272-3282(in Chinese with English abstract). http://www.oalib.com/paper/1473863 [63] Zhang, J.E., Xiao, W.J., Han, C.M., et al., 2011. A Devonian to Carboniferous Intra-Oceanic Subduction System in Western Junggar, NW China. Lithos, 125: 592-606. doi: 10.1016/j.lithos.2011.03.013 [64] Zhao, Z.X., Yang, X.N., Xu, Z.W., et al., 2013. Research on Thermometers and Barometers of Early Cretaceous Granite in Xinxian County, Henan Province, China. Journal of Nanjing University(Natural Sciences), 49(6): 747-761(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ201306010.htm [65] Zhou, T.F., Yuan, F., Fan, Y., et al., 2006. Geodynamic Significance of the A-Type Granites in the Sawuer Region in West Junggar, Xinjiang: Rock Geochemistry and SHRIMP Zircon Age Evidence. Science in China(Series D), 36(1): 39-48(in Chinese). [66] 冯乾文, 李锦轶, 刘建峰, 等, 2012. 新疆西准噶尔红山岩体及其中闪长质岩墙的时代——来自锆石LA-ICP-MS定年的证据. 岩石学报, 28(9): 2935-2949. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201209022.htm [67] 高睿, 肖龙, 王国灿, 等, 2013. 西准噶尔晚古生代岩浆活动和构造背景. 岩石学报, 29(10): 3413-3434. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310008.htm [68] 韩宝福, 何国琦, 王式洸, 1999. 后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质. 中国科学(D辑), 29(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199901002.htm [69] 韩宝福, 何国琦, 王式洸, 等, 1998. 新疆北部后碰撞幔源岩浆活动与陆壳纵向生长. 地质评论, 44(4): 396-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804008.htm [70] 韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(I)——后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm [71] 韩鑫, 严镜, 汪雅兵, 等, 2013. 西准噶尔红山岩体LA-ICP-MS锆石U-Pb测年及地质意义. 辽宁化工, 42(2): 139-142. doi: 10.3969/j.issn.1004-0935.2013.02.011 [72] 贺敬博, 陈斌, 2011. 西准噶尔克拉玛依岩体的成因: 年代学、岩石学和地球化学证据. 地学前缘, 18(2): 191-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102023.htm [73] 胡霭琴, 韦刚健, 2003. 关于准噶尔盆地基底时代问题的讨论——据同位素年代学研究结果. 新疆地质, 21(4): 398-406. doi: 10.3969/j.issn.1000-8845.2003.04.004 [74] 黄茂新, 1988. 对斯托默二长石地质温度计数学表达式的校正. 地质评论, 34(3): 282-283. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198803012.htm [75] 江远达, 1984. 关于准噶尔地区基底问题的初步探讨. 新疆地质, 2(1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI198401001.htm [76] 金成伟, 张秀棋, 1993. 新疆西准噶尔花岗岩类的时代及其成因. 地质科学, 28(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199301003.htm [77] 李永军, 王冉, 李卫东, 等, 2012. 西准噶尔达尔布特南构造-岩浆岩带斑岩型铜-钼矿新发现及找矿思路. 岩石学报, 28(7): 2009-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207006.htm [78] 刘昌实, 陈小明, 陈培荣, 等, 2003. A型岩套的分类、判别标志和成因. 高校地质学报, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011 [79] 刘新秒, 2000. 后碰撞岩浆岩的大地构造环境及特征. 前寒武纪研究进展, 23(2): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200002007.htm [80] 庞振甲, 李永军, 赵玉梅, 等, 2010. 西准阿克巴斯陶铝质A型花岗岩厘定及意义. 新疆地质, 28(2): 119-124. doi: 10.3969/j.issn.1000-8845.2010.02.001 [81] 邱检生, 王德滋, 蟹泽聪史, 等, 2000. 福建沿海铝质A型花岗岩的地球化学及岩石成因. 地球化学, 29(4): 313-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200004000.htm [82] 邱家骧, 林景仟, 王人镜, 1991. 岩石化学. 北京: 地质出版社, 210. [83] 尚兆聪, 张伟, 刘昆鑫, 等, 2012. 新疆西准噶尔地区花岗岩类年代学及其构造意义. 甘肃地质, 21(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201201003.htm [84] 苏玉平, 唐红峰, 侯广顺, 等, 2006. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究. 地球化学, 35(1): 55-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200601006.htm [85] 王涛, 刘燊, 胡瑞忠, 等, 2009. 苏鲁造山带A型花岗岩的元素地球化学及其成因. 吉林大学学报(地球科学版), 39(4): 676-688. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904011.htm [86] 王晓伟, 杨春霞, 刘景显, 等, 2011. 西准噶尔A型花岗岩地球化学特征及构造意义. 甘肃地质, 20(2): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201102004.htm [87] 汪洋, 2008. 再论南岭侏罗纪"铝质"A型花岗岩的成因及其对古地温线的制约. 大地构造与成矿学, 32(3): 365-381. doi: 10.3969/j.issn.1001-1552.2008.03.015 [88] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [89] 伍建机, 陈斌, 2004. 西准噶尔庙尔沟后碰撞花岗岩微量元素和Nd-Sr同位素特征及成因. 新疆地质, 22(1): 29-35. doi: 10.3969/j.issn.1000-8845.2004.01.006 [90] 吴锁平, 王梅英, 戚开静, 2007. A型花岗岩研究现状及其述评. 岩石矿物学杂志, 26(1): 57-66. doi: 10.3969/j.issn.1000-6524.2007.01.009 [91] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [92] 肖文交, 韩春明, 袁超, 等, 2006. 新疆北部石炭纪-二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约. 岩石学报, 22(5): 1062-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605002.htm [93] 肖序常, 汤耀庆, 冯益民, 等, 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社, 94-95. [94] 徐新, 何国琦, 李华芹, 等, 2006. 克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息. 中国地质, 33(3): 470-475. doi: 10.3969/j.issn.1000-3657.2006.03.003 [95] 鄢全树, 石学法, 高晶晶, 等, 2012. 南沙地块花岗质岩石矿物学特征及其成因信息. 矿物学报, 32(1): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201201017.htm [96] 杨德彬, 许文良, 王清海, 等, 2007. 蚌埠隆起区中生代花岗岩的岩石成因: 锆石Hf同位素的证据. 地球科学——中国地质大学学报, 23(2): 381-392. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702018.htm [97] 杨甫, 2012. 准噶尔盆地北部基底属性及其演化的锆石原位U-Pb年龄和微量元素分析(硕士学位论文). 西安: 西北大学, 77-78. [98] 杨钢, 肖龙, 王国灿, 等, 2015. 西准噶尔谢米斯台西段花岗岩年代学、地球化学、锆石Lu-Hf同位素特征及大地构造意义. 地球科学——中国地质大学学报, 40(3): 548-562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201503014.htm [99] 杨猛, 王居里, 王建其, 等, 2012. 新疆中天山北缘望峰地区花岗岩的地球化学、锆石U-Pb年代学及Hf同位素组成研究. 岩石学报, 28(7): 2121-2131. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207015.htm [100] 杨宗仁, 顾焕明, 1987. 准噶尔盆地基底性质及演化——航磁资料初步处理结果讨论. 新疆石油地质, 8(2): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD198702005.htm [101] 尹继元, 袁超, 王毓婧, 等, 2011. 新疆西准噶尔晚古生代大地构造演化的岩浆活动记录. 大地构造与成矿学, 35(2): 278-192. doi: 10.3969/j.issn.1001-1552.2011.02.013 [102] 张继恩, 肖文交, 韩春明, 等, 2010. 西准噶尔石炭纪洋中脊俯冲岩浆活动: 以玛里雅蛇绿岩为例. 岩石学报, 26(11): 3272-3282. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011010.htm [103] 赵增霞, 杨小男, 徐兆文, 等, 2013. 河南新县地区早白垩世花岗岩矿物温压计研究. 南京大学学报(自然科学版), 49(6): 747-761. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201306010.htm [104] 周涛发, 袁锋, 范裕等, 2006. 西准噶尔萨吾尔地区A型花岗岩的地球动力学意义: 来自岩石地球化学和锆石SHRIMP定年的证据. 中国科学(D辑), 36(1): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200601005.htm