Reducing Formation Damage to Low-Porosity and Low-Permeability CBM Reservoirs Using Calcium Carbonate Nanoparticles
-
摘要: 传统暂堵剂难以封堵低孔低渗煤层气储层中的大量纳米级别孔隙.通过煤岩显微观测、钻井液基本性能测试、泥饼清除实验、煤岩孔隙分布实验和气体渗透率实验,探讨了纳米碳酸钙降低低孔低渗煤层气储层伤害的效果.结果表明:纳米碳酸钙材料只有在水溶液中保持纳米级的分散状态,才可能对低渗煤岩起到暂堵作用;基于纳米碳酸钙的可降解钻井液既能封堵低孔低渗煤岩中微米级别孔隙,也能封堵其中的纳米级别孔隙;经过生物酶和稀盐酸双重解堵后,煤岩渗透率恢复值达77.17%~97.98%,储层保护效果好;煤岩孔隙分布实验可以在纳米尺度上研究纳米材料对低孔低渗储层的暂堵效果.研究成果可为纳米碳酸钙在低孔低渗煤层和页岩钻完井过程中的应用奠定良好技术基础.Abstract: It's difficult to block a mass of nanoscale pores in the low-porosity and low-permeability coalbed methane (CBM) reservoirs using traditional temporary plugging additives. The performances of reducing formation damage to low-porosity and low-permeability CBM reservoirs using calcium carbonate nanoparticles (nCaCO3) are evaluated in this study through microscope investigation of coal rocks, the basic performance tests of drilling fluid, mud cake removal tests, pore size distribution tests and gas permeability tests of coal rocks. It is found that only when nCaCO3 are dispersed to nano-scaled state in water solution could it temporally plug the low permeability coal rocks. However, nCaCO3 based degradable drilling fluid not only blocks the microscale pores in low-porosity and low-permeability coal rock, but also blocks the nanoscale pores. With the double unplugging technology of biological enzyme plus low concentration hydrochloric acid on the nCaCO3 based drilling fluid, the permeability recovery rate of coal rocks ranges from 77.17% to 97.98%. The reservoir protective effect on reservoir proves good. It is shown that the pore size distribution test could be used in the investigation on temporally plugging performance of nanoparticles to low-porosity and low-permeability reservoirs on nanoscale. This study may offer a technical support to facilitate future applications of nCaCO3 in drilling and completion process of low porosity and low permeability coal seams and shale formation.
-
表 1 基于纳米碳酸钙的可降解钻井液基本性能
Table 1. Basic properties of nCaCO3-based degradable drilling fluid
密度(g·cm-3) 表观黏度(mPa·s) 滤失量(mL) 滤饼(mm) pH 1.02 23.00 13.40 0.20 7.00 表 2 基于纳米碳酸钙的可降解钻井液的破胶效果
Table 2. Gel breaking efficiency of nCaCO3-based degradable drilling fluid
时间(h) 表观黏度(mPa·s) 破胶率(%) 0 23.00 - 1 4.70 79.57 2 3.70 83.91 3 3.50 84.78 12 3.30 85.65 表 3 纳米碳酸钙分散液暂堵过程中的煤岩气体渗透率变化
Table 3. Coal rock permeability fluctuation in temporary plugging process of nCaCO3 dispersion
煤样编号 上流压力(MPa) 气体渗透率(0.986 9×10-15 m2) 渗透率恢复率(%) K0 K1 K2 1# 0.40 2.46 1.18 3.21 130.49 0.50 2.67 1.40 2.94 110.11 0.60 3.10 1.79 3.57 115.16 2# 0.50 0.61 0.46 0.72 118.03 0.55 0.68 0.50 0.77 113.24 0.60 0.72 0.57 0.91 126.39 表 4 纳米碳酸钙钻井液暂堵过程中的煤岩气体渗透率变化
Table 4. The coal rock permeability change in the process of temporary plugging in contact with nCaCO3 drilling fluid
煤样编号 上流压力(MPa) 渗透率(0.986 9×10-15 m2) 渗透率恢复率(%) K0-1 K1-1 K2-1 K3-1 3# 0.45 0.82 0.33 0.50 0.68 82.93 0.50 0.92 0.41 0.54 0.71 77.17 0.60 1.24 0.53 0.80 0.96 77.42 4# 0.45 0.99 0.53 0.79 0.97 97.98 0.50 1.02 0.64 0.88 0.98 96.08 0.60 1.21 0.66 0.89 1.10 90.91 -
[1] Baltoiu, L.V., Warren, B.K., Natras, T.A., 2008. State-of-the-Art in Coalbed Methane Drilling Fluids. SPE Drilling & Completion, 23(3): 250-257. doi: 10.2118/101231-PA [2] Barr, K., 2009. A Guideline to Optimize Drilling Fluids for Coalbed Methane Reservoirs. SPE, 123175. doi: 10.2118/123175-MS [3] Cai, J.H., Liu, H., Chen, Y., et al., 2011. Study on Degradable Drilling Fluid System for Coalbed Methane Horizontal Drilling. Journal of China Coal Society, 36(10): 1683-1688 (in Chinese with English abstract). [4] Cai, J.H., Wang, J.J., Yuan, Y., et al., 2012. Inhibitive Ability Appraisal of Salt Solution on Coal Rock. Journal of China Coal Society, 37(6): 951-956 (in Chinese with English abstract). http://www.cqvip.com/QK/96550X/201206/42531782.html [5] Cai, J.H., Wang, J.J., Gu, S., 2013a. A Method to Disperse Nano Calcium Carbonate Powder into Water. Patent for Invention, ZL201310270211.2 (in Chinese). [6] Cai, J.H., Yuan, Y., Wang, J.J., et al., 2013b. Experimental Research on Decreasing Coalbed Methane Formation Damage Using Micro-Foam Mud Stabilized by Nanoparticles. Journal of China Coal Society, 38(9): 1640-1645 (in Chinese with English abstract). [7] Chen, J.F., He, T.B., Wu, W., et al., 2004. Adsorption of Sodium Salt of Poly (Acrylic) Acid (PAANa) on Nano-Sized CaCO3 and Dispersion of Nano-Sized CaCO3 in Water. Colloids and Surfaces A: Physicochem. Eng. Aspects, 232: 163-168. doi: 10.1016/j.colsurfa.2003.10.013 [8] Gentzis, T., Deisman, N., Chalaturnyk, R.J., 2009. Effect of Drilling Fluids on Coal Permeability: Impact on Horizontal Wellbore Stability. International Journal of Coal Geology, 78(3): 177-191. doi: 10.1016/j.coal.2009.01.001 [9] Huang, W.A., Qiu, Z.S., Wang, Y.Q., et al., 2012. Study on Damage Mechanism and Protection Drilling Fluid for Coalbed Methane. Journal of China Coal Society, 37(10): 1717-1721 (in Chinese with English abstract). [10] Li, M.Z., Liu, X.Q., Tang, Z.S., et al., 2002. Polymeric Fragment Damage and Polymeric Linkage-Specific Enzyme Breaker Technology. Oilfield Chemistry, 19(1): 89-96 (in Chinese with English abstract). http://www.researchgate.net/publication/293285422_Polymeric_fragment_damage_and_polymeric_linkage-specific_enzyme_breaker_technology [11] Qin, Y., 2005. Advances in Overseas Geological Research on Coalbed Gas: Origin and Reservoir Characteristics of Coalbed Gas. Earth Science Frontiers, 12(3): 289-298 (in Chinese with English abstract). [12] Su, X.B., 1998. Pore Characteristic of Coalbed Methane Reservoir. Journal of Jiaozuo Institute of Technology, 17(1): 6-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JGXB801.001.htm [13] Wang, S.W., Duan, L.X., Chen, Z.H., et al., 2004. Reservoir Evaluation for Exploration and Development of Coal-Bed Gas. Natural Gas Industry, 24(5): 82-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200405029.htm [14] Xu, H., Zhang, S.H., Leng, X., et al., 2005. Pore System Model and Property Analysis of Coal Reservoirs in Qinshui Basin. Chinese Science Bulletin, 50(Suppl. 1): 45-50 (in Chinese with English abstract). [15] Xu, T.T., Chen, Y.H., Feng, J.H., et al., 2003. The General Purpose Temporary Shield Plugging Technology in Protecting Hydrocarbon Reservoir. Drilling Fluid and Completion Fluid, 20(2): 39-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJYW200302012.htm [16] Yao, Y.B., Liu, D.M., 2006. Developing Features of Fissure System in Henan Coal Reserves Seams and Research on Mining of Coalbed Methane. Coal Sciences and Technologies, 34(3): 64-68 (in Chinese with English abstract). [17] Yao, Y.B., Liu, D.M., Tang, D.Z., et al., 2007. Coal Reservoir Physical Characteristics and Prospective Areas for CBM Exploitation in Pingdingshan Coalfield. Earth Science—Journal of China University of Geosciences, 32(2): 285-290 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX200702019.htm [18] Yue, Q.S., Zou, L.F., Jiang, G.Z., et al., 2012. Lab Investigation on Damage Mechanism of Coal Reservoir for Pinnate Horizontal Well Based on Coalbed Methane. Journal of China Coal Society, 37(1): 91-95 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/mtxb201201018 [19] Zheng, L.H., Kong, L.C., Cao, Y., et al., 2010. The Mechanism for Fuzzy-Ball Working Fluids for Controlling & Killing Lost Circulation. Chinese Science Bulletin, 55(15): 1520-1528 (in Chinese). doi: 10.1007/s11434-010-3091-x [20] 蔡记华, 刘浩, 陈宇, 等, 2011. 煤层气水平井可降解钻井液体系研究. 煤炭学报, 36(10): 1683-1688. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201110014.htm [21] 蔡记华, 王济君, 谷穗, 2013a. 一种在水溶液中分散纳米碳酸钙粉体材料的方法. 发明专利, 专利号: 201310270211.2. [22] 蔡记华, 王济君, 袁野, 等, 2012. 盐溶液对煤岩抑制性效果的评价. 煤炭学报, 37(6): 951-956. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201206012.htm [23] 蔡记华, 袁野, 王济君, 等, 2013b. 纳米材料稳定的微泡沫钻井液降低煤层气储层伤害的实验研究. 煤炭学报, 38(9): 1640-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201309024.htm [24] 黄维安, 邱正松, 王彦祺, 等, 2012. 煤层气储层损害机理与保护钻井液的研究. 煤炭学报, 37(10): 1717-1721. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201210027.htm [25] 李明志, 刘新全, 汤志胜, 等, 2002. 聚合物降解产物伤害与糖甙键特异酶破胶技术. 油田化学, 19(1): 89-96. doi: 10.3969/j.issn.1000-4092.2002.01.025 [26] 秦勇, 2005. 国外煤层气成因与储层物性研究进展与分析. 地学前缘, 12(3): 289-298. doi: 10.3321/j.issn:1005-2321.2005.03.033 [27] 苏现波, 1998. 煤层气储集层的孔隙特征. 焦作工学院学报, 17(1): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB801.001.htm [28] 王生维, 段连秀, 陈钟惠, 等, 2004. 煤层气勘探开发中的煤储层评价. 天然气工业, 24(5): 82-84. doi: 10.3321/j.issn:1000-0976.2004.05.027 [29] 许浩, 张尚虎, 冷雪, 等, 2005. 沁水盆地煤储层孔隙系统模型与物性分析. 科学通报, 50(增刊): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2005S1008.htm [30] 徐同台, 陈永浩, 冯京海, 等, 2003. 广谱型屏蔽暂堵保护油气层技术的探讨. 钻井液与完井液, 20(2): 39-41. doi: 10.3969/j.issn.1001-5620.2003.02.013 [31] 姚艳斌, 刘大锰, 2006. 煤储层孔隙系统发育特征与煤层气可采性研究. 煤炭科学技术, 34(3): 64-68. doi: 10.3969/j.issn.0253-2336.2006.03.021 [32] 姚艳斌, 刘大锰, 汤达祯, 等, 2007. 平顶山煤田煤储层物性特征与煤层气有利区预测. 地球科学——中国地质大学学报, 32(2): 285-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702019.htm [33] 岳前升, 邹来方, 蒋光忠, 等, 2012. 煤层气水平井钻井过程储层损害机理. 煤炭学报, 37(1): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201201021.htm [34] 郑力会, 孔令琛, 曹园, 等, 2010. 绒囊工作液防漏堵漏机理. 科学通报, 55(15): 1520-1528. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201015016.htm