Distribution Characteristics of Current Geothermal Field and Terrestrial Heat Flow in Huaibei Coalfield
-
摘要: 淮北煤田的高温热害问题愈发突出,但目前对该区系统的地温场特征及大地热流分布研究非常稀少.在系统分析淮北煤田大量地面钻孔井温测井数据和井下巷道围岩温度测试数据的基础上,结合72块岩石样品的热导率测试结果,全面阐述了该区现今地温梯度和大地热流的分布特征.研究表明:淮北煤田现今地温梯度众值介于1.80~2.80 ℃/100 m之间,平均地温梯度为2.42 ℃/100 m;大地热流值变化范围为39.52~74.12 mW/m2,平均热流值为55.72 mW/m2,地温梯度和热流值均低于同处华北板块的其他盆地以及南部的淮南煤田;大地热流受地温梯度控制明显,两者分布较为相似,整体表现为南高北低、西高东低的特点.结果表明,区内现今地温场和热流分布主要受区域地质背景和区内构造格局的控制.Abstract: The problem of high temperature in Huaibei coalfield is going to be more and more terrible, however, the research on the characteristics of geothermal field and the distribution of terrestrial heat flow in this region is extremely rare. On the basis of systematical analysis of temperature logging data of surface boreholes and the tested data of temperature of surrounding rock of underground roadway in Huaibei coalfield, combining the tested results of thermal conductivity of 72 rock samples, the current geothermal gradient and terrestrial heat flow in this region are comprehensively expounded. The study shows that the mode of current geothermal gradient in Huaibei coalfield is between 1.80 and 2.80 ℃/100 m and the average is 2.42 ℃/100 m. The terrestrial heat flow value ranges from 39.52 to 74.12 mW/m2 and the average is 55.72 mW/m2. The geothermal gradient and the terrestrial heat flow value are lower than those in Huainan coalfield and other basins in North China. Terrestrial heat flow is controlled by geothermal gradient obviously. The variation of geothermal distribution is similar to the distribution of geothermal gradient and it shows as a whole that the temperature in the south is higher than that in the north and the temperature in the west is also higher than that in the east. The analysis shows that the distribution of current geothermal field and heat flow in the region is mainly controlled by regional geological background and regional tectonic framework.
-
Key words:
- geothermal fields /
- geothermal gradient /
- terrestrial heat flow /
- structural control /
- Huaibei coalfield
-
表 1 井下测温结果
Table 1. The results of underground temperature
煤矿 测点位置 标高(m) 温度(℃) 平均地温梯度(℃/100 m) 地面钻孔平均地温梯度(℃/100 m) 芦岭矿 Ⅲ1轨道下山巷道不同位置 -650.0 28.1 2.32 2.24 -750.0 30.2 -800.0 31.3 -869.4 33.1 朱仙庄矿 Ⅱ851岩轨巷 -442.0 27.4 2.41 2.46 Ⅱ833岩轨巷 -558.0 30.4 Ⅱ5行人上山 -678.0 33.0 二水平回风上山 -324.0 24.6 87总回风副巷 -272.0 23.4 石台矿 2511风巷 -352.0 20.8 1.30 无测温孔 23120切眼 -473.0 22.8 刘桥一矿 Ⅱ66风巷距迎头20 m处 -740.0 28.1 1.50 1.80 810岩巷距迎头45 m处 -810.0 28.8 表 2 岩石热导率测试结果汇总
Table 2. The summary table of the tested results of rock thermal conductivity
煤矿 孔号 采样深度(m) 岩性(样品数(个)) 平均热导率(W/(m·K)) 卧龙湖 W6-2 881~1 026 泥岩(1) 2.36 砂岩(2) 2.62 岩浆岩(1) 2.49 孙疃 副检 222~1 183 泥岩(7) 2.17 砂岩(15) 2.51 祁东深部 27-28S7 733~1 233 泥岩(4) 2.28 砂岩(4) 2.79 任楼 46(Ⅰ)5 890~915 泥岩(7) 2.33 42-43-11 1 005~1 010 46(Ⅱ)4 1 021~1 023 砂岩(10) 3.30 42-43-12 1 057~1 071 46-47-15 1 210~1 230 煤(1) 0.88 46-47-13 1 070~1 208 杨庄 2013-2 90~394 泥岩(8) 1.99 砂岩(9) 2.64 表 3 淮北煤田大地热流值汇总
Table 3. The heat flow database of Huainan coalfield
孔号/井田 东经 北纬 计算段范围(m) 地温梯度(℃/100 m) 砂岩所占比例(%) 泥岩所占比例(%) 煤所占比例(%) 岩浆岩所占比例(%) 加权平均热导率(W/(m·K)) 大地热流值(mW/m2) 朱仙庄09-4★ 117°8′37″ 33°34′56″ 238~958 1.92 31.30 62.70 3.44 2.25 43.26 龙王庙北47-48-2★ 117°9′24″ 33°28′19″ 231~967 2.02 46.20 52.10 1.70 2.42 48.80 龙王庙南40-5★ 117°9′18″ 33°26′4″ 301~793 1.91 43.79 53.78 2.43 2.39 45.67 芦岭L4 117°12′23″ 33°32′16″ 201~1 160 1.74 53.59 42.50 3.91 2.42 42.03 祁南深部Q12-4 117°0′52″ 33°28′4″ 221~1 163 2.56 44.60 51.20 1.11 2.35 60.16 骑路孙5-4★ 116°59′28″ 33°33′29″ 216~694 2.52 49.60 47.20 2.30 2.40 60.56 钱营孜30-5 116°53′24″ 33°29′24″ 231~1 002 1.89 27.20 66.90 2.28 2.23 42.13 邹庄24-252★ 116°52′20″ 33°27′51″ 236~1 000 1.90 30.10 65.10 3.08 2.27 43.17 祁东深部29-4★ 117°4′44″ 33°23′53″ 430~806 2.80 51.20 43.80 2.95 2.37 66.49 祁东25-10★ 117°4′53″ 33°25′40″ 366~758 2.60 48.91 49.13 1.96 2.43 63.06 祁南18-8 117°0′44″ 33°24′53″ 380~816 2.70 53.21 45.18 1.61 2.45 66.24 五沟J1-4★ 116°37′39″ 33°33′9″ 270~741 2.55 49.89 47.61 2.50 2.42 61.73 张油坊3-9★ 116°39′0″ 33°34′48″ 280~1 175 2.28 48.50 48.30 1.25 2.39 54.55 赵集2-1 116°47′12″ 33°25′15″ 336~1 000 2.54 43.30 51.80 1.89 2.33 59.22 许疃67-19★ 116°43′49″ 33°24′57″ 359~750 2.70 38.74 54.40 6.86 2.29 61.78 邵于庄65-10 116°44′7″ 33°25′44″ 319~801 2.50 48.56 50.01 1.43 2.43 60.82 孙疃26-13★ 116°45′33″ 33°33′27″ 189~882 2.51 56.32 37.61 6.07 2.39 60.03 孙疃深部16-S2 116°47′3″ 33°36′5″ 172~1 222 2.59 52.19 43.87 3.94 2.41 62.36 杨柳04-16★ 116°45′17″ 33°38′35″ 142~672 2.40 51.89 46.50 1.61 2.45 58.72 任楼45-46-3 116°45′48″ 33°28′13″ 240~618 2.70 42.10 53.80 4.10 2.35 63.54 临涣2-3B3★ 116°39′18″ 33°39′50″ 178~605 2.38 36.79 61.87 1.34 2.37 56.51 海孜21-B2 116°36′35″ 33°40′6″ 233~780 2.02 46.80 51.38 1.82 2.42 48.82 青东9-106 116°31′4″ 33°39′5″ 239~721 2.28 56.81 40.89 2.30 2.46 56.08 袁一06-7★ 116°33′37″ 33°33′36″ 249~702 2.48 34.17 60.82 5.01 2.30 56.97 袁二04-22★ 116°27′2″ 33°31′23″ 262~962 2.11 46.17 50.21 3.62 2.38 50.27 大段家16-2★ 116°25′3″ 33°38′2″ 237~1 166 2.13 35.52 63.40 1.08 2.37 50.53 杨潘楼2-4★ 116°16′9″ 33°34′53″ 247~519 2.40 45.67 49.04 5.29 2.35 56.42 信湖22-7 116°7′60″ 33°28′34″ 438~1 262 2.70 23.02 75.32 0.64 2.29 61.93 刘店04-26 116°13′56″ 33°36′33″ 353~655 2.40 43.32 56.68 0.00 2.43 58.34 徐广楼33-6★ 116°18′26″ 33°30′11″ 286~526 2.70 47.62 50.18 2.20 2.41 65.19 花沟西25-9★ 115°56′58″ 33°27′25″ 686~1 301 3.00 34.97 60.36 2.07 2.59 2.34 70.26 卧龙湖B1-4 116°28′60″ 33°50′22″ 224~770 3.00 51.28 47.07 1.65 2.44 73.29 黄集1-3 116°35′17″ 33°53′36″ 185~737 3.01 57.49 40.17 2.34 2.46 74.12 火神庙10-3 116°39′24″ 33°52′33″ 119~678 1.79 38.21 58.47 2.12 1.20 2.34 41.88 梁花园6-7-2★ 116°43′25″ 33°55′10″ 104~630 1.69 50.74 48.41 0.85 2.45 41.40 刘一Ⅱ6 116°40′12″ 33°55′31″ 121~601 1.80 43.48 52.84 3.68 2.37 42.62 刘桥深部20-2★ 116°42′1″ 33°59′15″ 162~1 046 2.08 38.17 58.86 2.93 2.35 48.94 杨庄83-6 116°48′39″ 33°55′16″ 91~800 1.6 56.32 42.18 1.50 2.47 39.52 注:★号为近似稳态孔. -
[1] Cui, J.P., Ren, Z.L., Su, Y., et al. 2007. Relationship between Present Geotemperature and Hydrocarbon Generation in Haila'er Basin. Petroleum Exploration and Development, 34(4): 445-450 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200704012.htm [2] Feinstein, S., Kohm, B.P., Steckler, M.S., et al., 1996. Thermal History of the Eastern Margin of the Gulf of Suez, I. Reconstruction from Borehole Temperature and Organic Maturity Measurements. Tectonophysics, 266: 203-220. doi: 10.1016/S0040-1951(96)00190-4 [3] Guo, P.Y., 2009. Characteristics of Geothermal Field of Deep Mine and Its Heat Damage Control in China (Dissertation). China University of Mining and Technology, Beijing (in Chinese with English abstract). [4] Gao, S., Lerche, I., 1989. Geohistory, Thermal History and Hydrocarbon Generation History of Navar in Basin Coast No. 1 Well, Bering Sea, Alaska. Journal of Petroleum Geology, 12(3): 325-351. [5] He, Z.G., Liu, C.Y., Zhao, J.F., et al., 2009. A Study on Geothermal Field and Its Geological Significance in Southern Area of the North China Craton. Geological Review, 55(3): 428-434 (in Chinese with English abstract). http://www.researchgate.net/publication/284979994_A_study_on_geothermal_field_and_its_geological_significance_in_southern_area_of_the_North_China_Craton [6] Hong, Y.M., 1993. The Principle and the Comprehensive Explanation of Logging. China University of Petroleum Press, Dongying, 38 (in Chinese). [7] Hu, S.B., He, L.J., Wang, J.Y., 2000. Heat Flow in the Continental Area of China: A New Data Set. Earth Planet. Sci. Lett., 179(13): 407-419. [8] Hu, S.B., He, L.J., Wang, J.Y., 2001. Compilation of Heat Flow Data in the China Continental Area (3rd Edition). Chinese Journal of Geophysics, 44(5): 611-626 (in Chinese with English abstract). [9] Ju, Y.W., Wang, G.L., 2002. Tectonic Characteristics and Evolution of the Sulin Mine Area in the Huaibei Coalfield. Journal of Liaoning Technical University (Natural Science), 21(3): 286-289 (in Chinese with English abstract). http://www.researchgate.net/publication/292798614_Tectonic_characteristics_and_evolution_of_the_Sulin_mine_area_in_the_Huaibei_coalfield [10] Ju, Y.W., Wei, M.M., Xue, C.D., 2011. Control of Basin-Mountain Evolution on the Occurrence of Deep Coal and Coal Bed Methane in North China. Journal of China University of Mining & Technology, 40(3): 390-398 (in Chinese with English abstract). http://www.researchgate.net/publication/287630161_Control_of_basin-mountain_evolution_on_the_occurrence_of_deep_coal_and_coalbed_methane_in_North_China [11] Li, H.Y., Zhu, Y.W., Yi, J.C., et al., 2007. The Geothermal Change Rule and Analysis of Abnormal Factors in Huainan Mining Area. Safety in Coal Mines, 11: 68-71 (in Chinese). [12] Li, L., Luo, X.R., Zhang, K.B., 2010. Temperature Prediction in Deep Coal Mine of Dingji. Journal of Heilongjiang Institute of Science & Technology, 20(5): 340-342 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HLJI201005004.htm [13] Luo, Y., Ju, Y.W., Tan, J.Q., 2011. Characteristics of Present Geothermal Field and Prediction of Its Thermal Damage in Suntuan-Zhaoji Exploration Area. Journal of Graduate University of Chinese Academy of Sciences, 28(6): 734-739 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZKYB201106006.htm [14] Rao, S., Hu, S.B., Zhu, C.Q., et al., 2013. The Characteristics of Heat Flow and Lithospheric Thermal Structure in Junggar Basin, Northwest China. Chinese J. Geophysics, 56(8): 2760-2770 (in Chinese with English abstract). doi: 10.1002/cjg2.20061/full [15] Sun, Z.X., Zhang, W., Hu, B.Q., et al., 2006. Features of Heat Flow and the Geothermal Field of the Qinshui Basin. Chinese J. Geophysics, 49(1): 130-134 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_dqwlxb200601018.aspx [16] Tan, J.Q., Ju, Y.W., Hou, Q.L., et al., 2009. Distribution Characteristics and Influence Factors of Present Geo-Temperature Field in Su-Lin Mine Area, Huaibei Coalfield. Chinese J. Geophysics, 52(3): 732-739 (in Chinese with English abstract). [17] Tan, J.Q., Ju, Y.W., Zhang, W.Y., et al., 2010. Heat Flow and Its Coalbed Gas Effects in the Central-South Area of the Huaibei Coalfield, Eastern China. Science in China (Series D), 40(7): 855-865 (in Chinese). http://www.ingentaconnect.com/content/ssam/16747313/2010/00000053/00000005/art00006 [18] Wemicke, B., 1981. Low Angle Normal Faults in the Basin and Range Province: Nappe Tectonics in an Extending Orogen. Nature, 291: 645-647. doi: 10.1038/291645a0 [19] Wang, G.L., Cao, D.Y., Jiang, B., et al., 1992. The Thrust Nappe, Extension Algliding Nappe and Gravity Gliding Structure in the South of Northern China. China University of Mining & Technology Press, Xuzhou, 5-14 (in Chinese). [20] Wang, H.Y., Liu, S.W., Lei, X., 2013. Present Geothermal Regime of the Lower Yangtze Area, South China. Journal of China Coal Society, 38(5): 896-900 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000005/art00029 [21] Wang, L.S., Li, C., Liu, F.T., et al., 2000. Two Types of Basin Rheological Structure of the Lithosphere between Eastern and Western China. Science in China (Series D), 30(Suppl.): 116-121 (in Chinese). doi: 10.1007/BF02911945 [22] Wu, Y.D., Ju, Y.W., Hou, Q.L., et al., 2009. The Control of Tectonic-Thermal Evolution to CBM's Generation of the Sulin Mine Area in the Huaibei Coalfield. Progress in Natural Science, 19(10): 1134-1141 (in Chinese). [23] Xie, D.Y., 1993. Geothermal Charcateristics in Northern Tarim Basin, Northwestern China. Earth Science—Journal of China University of Geosciences, 18(5): 627-634 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199305012.htm [24] Yang, D.D., Wang, B.S., Zhang, X., et al., 2012. Ground Temperature Distribution and Heat Damage Prevention of Huainan Coal Field. China Mining Magazine, 21(7): 94-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201207031.htm [25] Yu, H.C., 1991. The Governance of Geothermal and Heat Disaster in Mine. China Coal Industry Publishing House, Beijing, 35-41 (in Chinese). [26] Zhang, S., Tian, D.C., Liu, W.Z., 2012. Geotherm Distribution in Guobei Coal Mine and Its Influencing Factors. Journal of Anhui University of Science and Technology (Natural Science), 32(1): 35-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HLGB201201010.htm [27] Zhang, P., Wang, L.S., Liu, S.W., et al., 2007. Geothermal Field in the South Huabei Basins. Progress in Geophysics, 22(2): 604-608 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200702039 [28] Zhong, S.X., 1985. Discussion on Simple Question about the Temperature Curve Correction. Coal Geology and Explotion, (4): 48-51 (in Chinese). [29] Zhou, Q.H., Feng, Z.H., Men, G.T., 2007. The Study on Present Geothermal Features and the Relation with Natural Gas's Generation of Xujiaweizi Fault Depression in the North of Songliao Basin. Science in China (Series D), 37(Suppl.): 177-188 (in Chinese). [30] Zhou, Y.H., Luo, X.R., Li, L., et al., 2011. The Analysis on Thermal Physical Parameters and Terrestrial Heat Flow of Coal Measure Strata in Huainan Mining Area. Safety in Coal Mines, 42(12): 116-119 (in Chinese). [31] 崔军平, 任战利, 苏勇, 等, 2007. 海拉尔盆地现今地温场与油气的关系. 石油勘探与开发, 34(4): 445-450. doi: 10.3321/j.issn:1000-0747.2007.04.010 [32] 郭平业, 2009. 我国深井地温场特征及热害控制模式研究(博士学位论文). 北京: 中国矿业大学. [33] 何争光, 刘池洋, 赵俊峰, 等, 2009. 华北克拉通南部地区现今地温场特征及其地质意义. 地质论评, 55(3): 428-434. doi: 10.3321/j.issn:0371-5736.2009.03.014 [34] 洪有密, 1993. 测井原理与综合解释. 东营: 中国石油大学出版社, 38. [35] 胡圣标, 何丽娟, 汪集旸, 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611-626. doi: 10.3321/j.issn:0001-5733.2001.05.005 [36] 琚宜文, 王桂梁, 2002. 淮北宿临矿区构造特征及演化. 辽宁工程技术大学学报(自然科学版), 21(3): 286-289. doi: 10.3969/j.issn.1008-0562.2002.03.010 [37] 琚宜文, 卫明明, 薛传东, 2011. 华北盆山演化对深部煤与煤层气赋存的制约. 中国矿业大学学报, 40(3): 390-398. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201103012.htm [38] 李红阳, 朱耀武, 易继承, 等, 2007. 淮南矿区地温变化规律及其异常因素分析. 煤矿安全, 11: 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ200711023.htm [39] 李浪, 罗新荣, 张克兵, 2010. 丁集煤矿深部地温预测. 黑龙江科技学院学报, 20(5): 340-342. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201005004.htm [40] 雒毅, 琚宜文, 谭静强, 2011. 孙疃-赵集勘探区现今地温场特征及其高温热害预测. 中国科学院研究生院学报, 28(6): 734-739. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201106006.htm [41] 饶松, 胡圣标, 朱传庆, 等. 2013. 准噶尔盆地大地热流特征与岩石圈热结构. 地球物理学报, 56(8): 2760-2770. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201308025.htm [42] 孙占学, 张文, 胡宝群, 等, 2006. 沁水盆地大地热流与地温场特征. 地球物理学报, 49(1): 130-134. doi: 10.3321/j.issn:0001-5733.2006.01.018 [43] 谭静强, 琚宜文, 侯泉林, 等, 2009. 淮北煤田宿临矿区现今地温场分布特征及其影响因素. 地球物理学报, 52(3): 732-739. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200903018.htm [44] 谭静强, 琚宜文, 张文永, 等, 2010. 淮北煤田中南部大地热流及其煤层气资源效应. 中国科学(D辑), 40(7): 855-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201007006.htm [45] 王桂梁, 曹代勇, 姜波, 等, 1992. 华北南部的逆冲推覆、伸展滑覆与重力滑动构造. 徐州: 中国矿业大学出版社, 5-14. [46] 王华玉, 刘绍文, 雷晓, 2013. 华南下扬子区现今地温场特征. 煤炭学报, 38(5): 896-900. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305033.htm [47] 王良书, 李成, 刘福田, 等, 2000. 中国东、西部两类盆地岩石圈热-流变学结构. 中国科学(D辑), 30(增刊): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2000S1014.htm [48] 武昱东, 琚宜文, 侯泉林, 等, 2009. 淮北煤田宿临矿区构造-热演化对煤层气生成的控制. 自然科学进展, 19(10): 1134-1141. doi: 10.3321/j.issn:1002-008X.2009.10.017 [49] 谢德宜, 1993. 塔里木盆地北部的地温特征. 地球科学——中国地质大学学报, 18(5): 627-634. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199305012.htm [50] 杨丁丁, 王佰顺, 张翔, 等, 2012. 淮南煤田新区地温分布规律分析及热害防治. 中国矿业, 21(7): 94-97. doi: 10.3969/j.issn.1004-4051.2012.07.027 [51] 余恒昌, 1991. 矿山地热与热害治理. 北京: 煤炭工业出版社, 35-41. [52] 张帅, 田道春, 刘文中, 2012. 涡北煤矿地温分布规律及其影响因素分析. 安徽理工大学学报(自然科学版), 32(1): 35-38. doi: 10.3969/j.issn.1672-1098.2012.01.008 [53] 张鹏, 王良书, 刘绍文, 等, 2007. 南华北盆地群地温场研究. 地球物理学进展, 22(2): 604-608. doi: 10.3969/j.issn.1004-2903.2007.02.039 [54] 钟仕兴, 1985. 关于简易测温曲线校正问题的商榷. 煤田地质与勘探, 4: 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT198506014.htm [55] 周庆华, 冯子辉, 门广田, 2007. 松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究. 中国科学(D辑), 37(增刊): 177-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S2020.htm [56] 周昀涵, 罗新荣, 李浪, 等, 2011. 淮南矿区煤系地层热物性参数与大地热流分析. 煤矿安全, 42(12): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201112040.htm