• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新疆库鲁克塔格成矿带主要矿床类型及成矿系列划分

    曹晓峰 王祥东 吕新彪 袁迁 汪一凡 刘文 申文

    曹晓峰, 王祥东, 吕新彪, 袁迁, 汪一凡, 刘文, 申文, 2015. 新疆库鲁克塔格成矿带主要矿床类型及成矿系列划分. 地球科学, 40(6): 1017-1033. doi: 10.3799/dqkx.2015.085
    引用本文: 曹晓峰, 王祥东, 吕新彪, 袁迁, 汪一凡, 刘文, 申文, 2015. 新疆库鲁克塔格成矿带主要矿床类型及成矿系列划分. 地球科学, 40(6): 1017-1033. doi: 10.3799/dqkx.2015.085
    Cao Xiaofeng, Wang Xiangdong, Lü Xinbiao, Yuan Qian, Wang Yifan, Liu Wen, Shen Wen, 2015. Tectonic Evolution and Formation of Major Ore Deposits in Kuluketage Metallogenic Belt, Xinjiang. Earth Science, 40(6): 1017-1033. doi: 10.3799/dqkx.2015.085
    Citation: Cao Xiaofeng, Wang Xiangdong, Lü Xinbiao, Yuan Qian, Wang Yifan, Liu Wen, Shen Wen, 2015. Tectonic Evolution and Formation of Major Ore Deposits in Kuluketage Metallogenic Belt, Xinjiang. Earth Science, 40(6): 1017-1033. doi: 10.3799/dqkx.2015.085

    新疆库鲁克塔格成矿带主要矿床类型及成矿系列划分

    doi: 10.3799/dqkx.2015.085
    基金项目: 

    “十二·五”国家科技支撑计划项目 2011BAB06B04-05

    中国博士后科学基金委特别资助项目 2013T60758

    中国博士后科学基金委面上资助项目 2012M521492

    中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目 CUG120840

    中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目 CUG120702

    中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目 CUGL120296

    详细信息
      作者简介:

      曹晓峰(1985-),男,副教授,博士,从事矿床成因和成矿规律相关的教学和研究工作.E-mail: cao079@qq.com

      通讯作者:

      吕新彪(1962-),E-mail: Lvxb_01@163.com

    • 中图分类号: P612

    Tectonic Evolution and Formation of Major Ore Deposits in Kuluketage Metallogenic Belt, Xinjiang

    • 摘要: 库鲁克塔格是新疆前寒武纪出露较全的地区,然而该区区域成矿规律研究程度非常低.通过对研究区已有资料进行总结分析,系统阐述研究区矿床类型,并对其成矿系列进行划分.研究区从太古代到早古生代形成了7个主要的岩浆构造演化阶段:古太古代陆核形成阶段(3.3~3.0 Ga)、新太古代-古元古代陆壳增生改造阶段(2.6~2.3 Ga)、古元古代中晚期陆壳改造阶段(2.1~1.8 Ga)、中元古代晚期-新元古代早期造山运动阶段(1.1~0.86 Ga)、新元古代中期后碰撞伸展阶段(830~800 Ma)、新元古代中晚期陆内裂解阶段(770~600 Ma)和早古生代造陆运动阶段.成矿作用主要发生在古元古代、新元古代及早古生代.依据各构造演化阶段、含矿建造特征及矿床成因特征,将库鲁克塔格成矿作用类型总结为以下6个主要成矿系列,即形成于古元古代陆壳增生改造环境下的Fe-P-Cu-Au系列、新元古代俯冲碰撞环境下的Cu-Au系列、新元古代后碰撞环境下的Cu-Mo-Au-Fe-P-REE系列、新元古代裂解环境下的Cu-Ni系列、早古生代沉积盆地中Ag-V-Mo-Au-U-P系列和早古生代俯冲岛弧环境下的Cu-Au系列.

       

    • 图  1  库鲁克塔格区域地质简图及主要矿床分布

      据西安地质矿产研究所,中国天山及邻区地质图 1∶100万,2007.①滩中山;②托克拉克布拉克;③阿斯干;④兴地;⑤中途站;⑥红柳沟;⑦西山口;⑧却尔却克山;⑨雅尔当山;⑩太阳岛

      Fig.  1.  Regional geological sketch map and main ore deposits distribution of Kuluketage

      图  2  库鲁克塔格岩浆岩及其年龄分布(曹晓峰等, 2012)

      Fig.  2.  Magmatic rocks distribution and their ages

      图  3  小金沟金矿床矿区地质图(冯本智等, 1995)

      1.黑云母变粒岩;2.石榴石浅粒岩;3.片麻状二长花岗岩;4.中-粗粒二长花岗岩;5.含金石英脉;6.断裂带及其编号;7.片理产状(°)

      Fig.  3.  Geological map of Xiaojingou gold deposit

      图  4  阿斯廷布拉克矿区地质图

      新疆维吾尔自治区地质局区域地质调查大队, 兴地幅1∶20万区域矿产图, 1982.1.第四系;2.兴地塔格群下亚群;3.兴地塔格群中亚群;4.兴地塔格群上亚群;5.大理岩;6.花岗岩;7.闪长岩;8.铁矿体;9.断裂;10.岩性界限

      Fig.  4.  Geological map of Astingbulake iron ore deposit

      图  5  鲍温布拉克铜矿地质简图(冯本智等,1995)

      1.石英岩;2.大理岩;3.二云母石英片岩;4.黑云石英片;5.绢云石英片岩;6.铜矿体;7.花岗片麻岩;8.角闪片麻岩岩;9.闪长岩、辉绿岩脉;10.逆断层;11.平推断层;12.剖面位置

      Fig.  5.  Geological map of Baowenbulake copper ore deposit

      图  6  大西沟铁磷矿区地质简图(夏学惠等,2010)

      Fig.  6.  Geological sketch of Daxigou Fe-P ore deposit

      图  7  尉犁县阿斯坦布拉克铜矿剖面(冯本智等,1995)

      1.黑色千枚岩;2.白云质结晶灰岩;3.含铜石英脉;4.褐铁矿脉;5.矿体;6.实测断层

      Fig.  7.  Profile of Asitanbulake copper deposit at Yuli county

      图  8  大平梁矿区地质(据新疆物化探大队矿区填图资料,2006)

      Fig.  8.  Geological map of Dapingliang ore deposit

      图  9  兴地Ⅱ号铜镍矿床平面和剖面(李华芹和陈富文,2004)

      Fig.  9.  Geological plan and profile of Xingdi No.Ⅱ Cu-Ni deposit

      图  10  且干布拉克大坂银钒矿床地层柱状图(冯本智等,1995)

      Fig.  10.  Sratigraphic column of Qieganbulakedaban Ag-V ore deposit

      图  11  穹塔格铜金矿区地质

      据新疆地矿局物化探大队,新疆若羌县穹塔格铜金矿风险勘查设计书,2007

      Fig.  11.  Geological map of Qiongtage Cu-Au ore deposit at southeast Kuluketage, Xinjiang

      表  1  库鲁克塔格地区主要成矿系列及其对应的矿床类型

      Table  1.   Main ore metallogenic series and their typical ore deposit types at Kuluketage area

      主要成矿系列 矿床类型 主要矿床(点) 典型矿床地质特征
      古元古代陆壳增生改造环境下的Fe-P-Cu-Au系列 与兴地塔格群变质沉积岩有关的BIF型铁矿 阿斯廷布拉克 矿体受区域地层控制,呈条纹状、互层状产于古元古代兴地塔格群石英岩中,一般厚约17~35 m,矿石矿物为磁铁矿和赤铁矿,矿床沉积时代约2 399 Ma,变质时代为1 954 Ma
      与兴地塔格群构造变质作用有关的石英脉型金矿 大、小金沟 矿体受岩体与地层接触带控制,矿化产于石英脉中,主要矿物为黄铁矿、方铅矿、自然金、磁铁矿、褐铁矿和方解石.研究表明成矿热液主要来自岩浆岩,经岩体锆石U-Pb测年获得其形成时代约为1 930 Ma
      与钙碱性高钾钙碱性中基性岩浆岩有关的岩浆型铁磷矿 大西沟 铁磷矿体主要赋存在蚀变斜长岩中.主要有用组分为Fe、P、Ti,呈独立矿物磁铁矿、磷灰石和钛磁铁矿赋存在矿石中.矿体多呈似层状和透镜状,锆石U-Pb测年获得其形成时代约为1 818 Ma
      与兴地塔格群变质及热液活动有关的层控型铜矿床 鲍温布拉克 本矿床沉积特征较为突出,矿化严格产于大理岩透镜体中,矿石内平行条带状构造发育且与层面产状一致,矿化与围岩整合,矿石具有变晶结构,其与围岩同样遭受了区域变质作用
      新元古代俯冲碰撞环境下的Cu-Au系列 与新元古代帕尔岗群有关的变质热液型铜金矿 阿斯坦布拉克 含铜(金)石英脉主要分布于新元古代帕尔岗群下组的千枚岩、千枚状粉砂岩中,沿千枚理或斜切千枚理产出,部分产于白云质结晶灰岩中与围岩呈过渡关系.产于白云质灰岩中的含铜石英脉以富碳酸盐为主,含黄铜矿、辉铜矿、孔雀石、蓝铜矿及少量的黄钾铁矾和黄铁矿等.石英脉的直接围岩为白云质结晶灰岩,多数矿脉交代灰岩明显,与之接触关系不清,所以称之为含铜白云质结晶灰岩
      新元古代后碰撞环境下的Cu-Mo-Au-Fe-P-REE系列 与富钾花岗岩有关的矽卡岩型铜钼铁矿床 大平梁 矿体产于岩体与围岩接触带形成的矽卡岩中,成矿物质及流体主要来自矿区出露的岩体,早期形成石榴石透辉石矽卡岩及磁铁矿化,到晚阶段形成绿帘石、绿泥石、石英方解石蚀变,并伴随铜钼金矿化.辉钼矿Re-Os同位素获得其形成时代为829.4±9.5 Ma
      与碱性岩、偏碱性基性超基性岩有关的铁磷稀有稀土矿床 且干布拉克 杂岩体从早到晚岩浆侵入顺序为橄榄岩-黑云母透辉岩-碳酸岩.杂岩体发生两类矿化,一类是以金云母和蛭石为代表的非金属矿化,一类是以磷灰石和磁铁矿为代表的铁磷稀土矿化.前者存在于蚀变橄榄岩和蚀变透辉石岩中,后者存在于透辉石岩和碳酸岩中.其锆石U-Pb及岩石矿物Rb-Sr,Sm-Nd获得的成矿时代为800~820 Ma
      新元古代裂解环境下的Cu-Ni系列 与新元古代拉斑质基性超基性岩有关的铜镍矿床 兴地Ⅱ号 杂岩体岩相分带明显,由内向外依次为二辉橄榄岩相、辉石岩相、辉长苏长岩相和辉长岩相.矿体的空间形态呈似层状、透镜状及脉状.其形态及产状基本上受岩相控制,铜镍矿体向岩相带中心倾斜,赋存于岩体内的橄榄岩相带底部或者辉石岩相与橄榄岩相的交界部位.锆石U-Pb定年获得其成矿时代约为760 Ma
      早古生代沉积盆地中Ag-V-Mo-Au-U-P系列 与寒武纪早期黑色岩系有关的银钒金铀磷矿床 且干布拉克大阪 该矿床产于寒武系下统西大山组,含矿建造的底部主要为黑色隧石岩、含碳粉砂质页岩,向上逐渐过渡为暗色-黑色的灰岩.矿层下盘岩石常有火山岩出现,岩性从超基性岩-酸性岩,这是建造内存在银钒矿层的重要标志.成矿元素赋存于黄铁矿、钛铁矿、磁铁矿等矿物中,未见有独立矿物出现
      早古生代俯冲岛弧环境下的Cu-Au系列 与中酸性侵入岩有关的岩浆热液型铜金矿 穹塔格 矿体出露在安山玢岩中,矿化蚀变形成的金属矿物主要有黄铜矿、黄铁矿、磁铁矿,氧化矿物为斑铜矿、铜蓝、孔雀石、褐铁矿.矿石构造以细脉浸染状构造、稀疏浸染状构造、稠密浸染状构造、条带状及块状构造产出.获取的安山玢岩的锆石U-Pb年龄为494.2±3.9 Ma
      下载: 导出CSV
    • [1] Cai, Z.H., Xu, Z.Q., Tang, Z.M., et al., 2011. The Crustal Deformation during the Early Paleozoic Period and the Timing of Orogeny in Kuruktag Area on the Northeast Margin of Tarim Basin. Geology in China, 38(4): 855-867 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201104007.htm
      [2] Cao, X.F., 2012. Neoproterozoic-Early Paleozoic Tectonothermal Events and Mineralization of Kuluketage Block, Xinjiang (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [3] Cao, X.F., Gao, X., Lü, X.B., et al., 2012. Sm-Nd Geochronology and Geochemistry of a Neoproterozoic Gabbro at Kuluketage, North-Western China. International Geology Review, 54(8): 861-875. doi: 10.1080/00206814.2011.639946
      [4] Cao, X.F., Lü, X.B., Gao, X., et al., 2012. Magmatic Activities and Tectonic Evolution of Xinjiang Precambrian Kuluketage Block, NW China. Xinjiang Geology, 30(4): 384-391 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201204004.htm
      [5] Cao, X.F., Lü, X.B., Lei, J.H., et al., 2010. Geological Characteristics and Ore Genesis of Neoproterozoic Dapingliang Copper Multi-Metal Deposit at Eastern Kuluketage, Xinjiang. Mineral Deposits, 29(Suppl. 4): 167-168 (in Chinese).
      [6] Cao, X.F., Lü, X.B., Lei, J.H., et al., 2010. The Age of the Neoproterozoic Dapingliang Skarn Copper Deposit in Kuruketage, NW China. Resource Geology, 60(4): 397-403. doi: 10.1111/j.1751-3928.2010.00144.x
      [7] Cao, X.F., Lü, X.B., Liu, S.T., et al., 2011. LA-ICP-MS Zircon Dating, Geochemistry, Petrogenesis and Tectonic Implications of the Dapingliang Neoproterozoic Granites at Kuluketage Block, NW China. Precambrian Research, 186(1-4): 205-219. doi: 10.1016/j.precamres.2011.01.017
      [8] Deng, X.L., Shu, L.S., Zhu, W.B., et al., 2008. Precambrian Tectonism, Magmatism, Deformation and Geochronology of Igneous Rocks in the Xingdi Fault Zone, Xinjiang. Acta Petrologica Sinica, 24(12): 2800-2808 (in Chinese with English abstract). http://www.researchgate.net/publication/283808498_Precambrian_tectonism_magmatiam_deformation_and_geochronology_of_igneous_rocks_in_the_Xingdi_fault_zone_Xinjiang
      [9] Dong, L.H., Feng, J., Liu, D.Q., 2010. Research for Classification of Metallogenic Unit of Xinjiang. Xinjiang Geology, 28(1): 1-15 (in Chinese with English abstract). http://www.researchgate.net/publication/285995050_Research_for_classification_of_metallogenic_unit_of_Xinjiang
      [10] Dong, L.H., Xu, X.W., Zhao, S.M., 2012. Discovery and Significance of 1.95 Ga BIF in the Kuluketage Area, Xinjiang. Xinjiang Geology, 30(4): 371-376. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201204002.htm
      [11] Duan, J.Y., Xia, D.X., An, S.L., 2005. Deep-Water Sedimentation and Sedimento-Tectonopaleogeography of the Neoproterozoic-Early Palaeozoic Aulacogen in Kuruktag, Xingjiang, China. Acta Geologica Sinica, 79(1): 7-14 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2005.tb00861.x
      [12] Feng, B.Z., Zhou, Y.W., Chi, S.F., et al., 1995. Presinian Geology, Precious and Nonferrous Metal Deposits in Kuruketage Area, Xinjiang Uygur Autonomous Region, China. Geological Publishing House, Beijing (in Chinese).
      [13] Gao, Z.J., 1990. Second Discussion about Stratigraphy Problems of the Precambrian of Tianshan Region. Xinjiang Geology, 8(1): 80-90 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI199001008.htm
      [14] Ge, R.F., Zhu, W.B., Wu, H.L., et al., 2012a. The Paleozoic Northern Margin of the Tarim Craton: Passive or Active?Lithos, 142-143: 1-15. doi. org/10.1016/j. lithos. 2012.02.010 doi: 10.1016/j.lithos.2012.02.010
      [15] Ge, R.F., Zhu, W.B., Zheng, B.H., et al., 2012b. Early Pan-African Magmatism in the Tarim Craton: Insights from Zircon U-Pb-Lu-Hf Isotope and Geochemistry of Granitoids in the Korla Area, NW China. Precambrian Research, 212/213: 117-138. doi: 10.1016/j.precamres.2012.05.001
      [16] Guo, Z.J., Zhang, Z.C., Liu, S.W. et al., 2003. U-Pb Geochronological Evidence for the Early Precambrian Complex of the Tarim Craton, NW China. Acta Petrologica Sinica, 19(3): 537-542 (in Chinese with English abstract). http://www.oalib.com/paper/1471473
      [17] Hu, A.Q., Rogers, G., 1992. Discovery of 3.3 Ga Archaean Rocks in North Tarim Block of Xinjiang, Western China. Chinese Science Bulletin, 37(18): 1546-1549.
      [18] Hu, A.Q., Wang, Z.G., Tu, G.C., et al., 1997. Geological Evolution and Rock-Ore Forming Regularity. Science Press, Beijing (in Chinese).
      [19] Hu, A.Q., Wei, G.J., 2006. On the Age of the Neo-Archean Qingir Gray Gneisses from the Northern Tarim Basin, Xinjiang, China. Acta Geologica Sinica, 80(1): 126-134 (in Chinese with English abstract). http://www.researchgate.net/publication/279583228_On_the_age_of_the_Neo-Archean_Qingir_gray_gneisses_from_the_northern_Tarim_Basin_Xinjiang_China
      [20] Hu, S.L., Wang, S.S., Sang, H.Q., et al., 1990. The Isotopic Ages and REE Geochemistry of Damiao Anorthosite and Their Geological Implication. Scientia Geologica Sinica, (4): 332-343 (in Chinese with English abstract).
      [21] Jiang, C.Y., Lu, D.R., Bai, K.Y., et al., 2005. Metasomatism Products of Continental Lithosphere Mantle—Roseite Deposits, Qieganbulake. Acta Petrologica Sinica, 21(1): 201-210 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200501020.htm
      [22] Li, H.Q., Chen, F.W., 2004. Isotopic Geochronology of Regional Mineralization in Xinjiang, NW China. Geological Publishing House, Beijing (in Chinese with English abstract).
      [23] Li, Q., Yu, H.F., Xiu, Q.Y., 2002. On Precambrian Basement of the Eastern Tianshan Mountains, Xinjiang. Xinjiang Geology, 20(4): 346-351 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200204019.htm
      [24] Li, X.R., 1994. Structural Deformation of Xingdi Fault in the Northern Margin of Tarim Basin. Xinjiang Geology, 12(3): 209-218 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI403.002.htm
      [25] Long, X.P., Sun, M., Yuan, C., et al., 2012. Zircon REE Patterns and Geochemical Characteristics of Paleoproterozoic Anatectic Granite in the Northern Tarim Craton, NW China: Implications for the Reconstruction of the Columbia Supercontinent. Precambrian Research, 222-223: 474-487. doi: 10.1016/j.precamres.2011.09.009
      [26] Long, X.P., Yuan, C., Sun, M., et al., 2010. Archean Crustal Evolution of the Northern Tarim Craton, NW China: Zircon U-Pb and Hf Isotopic Constraints. Precambrian Research, 180: 272-284. doi: 10.1016/j.precamres.2010.05.001
      [27] Long, X.P., Yuan, C., Sun, M., et al., 2011. The Discovery of the Oldest Rocks in the Kuluketage Area and Its Geological Implications. Science in China (Series D), 54(3): 342-34. doi: 10.1007/s11430-010-4156-z
      [28] Lu, S.N., Li, H.K., Zhang, C.L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1-2): 94-107. doi: 10.1016/j.precamres.2007.04.025
      [29] Luo, C.Y., Yang, H.Q., Zhu, B.Q., et al., 1998. On the Zonation of Basic-Ultrabasic Complex in Xingdi, Xinjiang. Northwest Geoscience, 19(1): 52-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBFK199801001.htm
      [30] Shu, L.S., Deng, X.L., Zhu, W.B., et al. 2011. Precambrian Tectonic Evolution of the Tarim Block, NW China: New Geochronological Insights from the Quruqtagh Domain. Journal of Asian Earth Sciences, 42: 774-790. doi: 10.1016/j.jseaes.2010.08.018
      [31] Sun, B.S., Huang, J.H., 2007. Sm-Nd Isotopic Age of Qieganbulak Ultrabasic-Carbonatite Complex in Xinjiang, China and Its Geological Significance. Acta Petrologica Sinica, 23(7): 1611-1616 (in Chinese with English abstract). http://www.cqvip.com/qk/94579x/200707/25521674.html
      [32] Sun, X.M., Wang, P.J., Liu, P.J., et al., 2006. Structural Features and Tectonic Evolutionary History of Xingdi Fault. Xinjiang Geology, 24(4): 348-352 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200604002.htm
      [33] Xi, G.Q., 2011. Geological and Magnetic Signature of Kawuliuke Tag District. Geology of Chemical Minerals, 33(2): 108-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGKC201102012.htm
      [34] Xia, X.H., Tan, Y.J., Wu, Y.L., et al., 2008. Ore-Forming Conditions and Prospectings of Iron and Phosphorite in Kuluketage Area, Xinjiang Province. Geology of Chemical Minerals, 33(2): 91-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=HGKC200802008&dbcode=CJFD&year=2008&dflag=pdfdown
      [35] Xia, X.H., Yuan, J.Z., Xi, G.Q., et al., 2009. The Feasibility Study and Metallogenic Prediction of Endogenesis Phosphorite Resources in the Northern Edge of Talimu Platform. Geology of Chemical Minerals, 31(3): 129-158 (in Chinese with English abstract).
      [36] Xia, X.H., Yuan, J.Z., Xi, G.Q., et al., 2010. Geochemistry of Complex Rocks and Characteristics of Daxigou Iron-Phosphorite Deposits, Xinjiang. Journal of Jilin University (Earth Science Edition), 40(4): 879-885 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201004019.htm
      [37] Xia, Z.D., Shi, F.P., Hu, X.J., et al., 2009. Geochemistry and Petrogenesis of Xingdi No. 2 Mafic-Ultramafic Intrusion in the Kuluketag Area. Xiniiang. Acta Petrologica Sinica, 25(4): 805-816 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200904007.htm
      [38] Xiao, P.X., Huang, Y.H., Wang, Y.X., et al., 2006. Geochemical Characteristics and Isotope Dating of Moyite at the Southeastern Margin of the Kuruktag Block, Xinjiang, China. Geological Bulletin of China, 25(6): 725-729 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252289794.html
      [39] Xu, Z.Q., He, B.Z., Zhang, C.L., et al., 2013. Tectonic Framework and Crustal Evolution of the Precambrian Basement of the Tarim Block in NW China: New Geochronological Evidence from Deep Drilling Samples. Precambrian Research, 235: 150-162. doi: 10.1016/j.precamres.2013.06.001
      [40] Xu, Z.Q., Li, S.T., Zhang, J.X., et al., 2011. Paleo-Asian and Tethyan Tectonic Systems with Docking the Tarim Block. Acta Petrologica Sinica, 27(1): 1-22 (in Chinese with English abstract). http://www.researchgate.net/publication/298499409_Paleo-Asian_and_Tethyan_tectonic_systems_with_docking_the_Tarim_block
      [41] Yang, T.Q., 1992. The Metallogenic Model and Prospect of the Dajingou-Xiaojingou Auriferous Province in the Kurukertag Area, Xinjiang. Journal of Changchun University of Earth Sciences, 22(3): 290-296 (in Chinese with English abstract).
      [42] Yuan, J.Z., Xia, X.H., Xi, G.Q., et al., 2010. Geological Characteristics and Prospecting Significance of Magnetite-Apatite Deposit of Aertang Area in Sinkiang. Geology of Chemical Minerals, 32(2): 105-111 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=HGKC201002007&dbcode=CJFD&year=2010&dflag=pdfdown
      [43] Yuan, Q., Cao, X.F., Lü, X.B., 2014. Petrology and Zircon U-Pb Dating Combined with Hf Isotope Study of Granitic Rocks from the Kuluketage Block (Tarim Craton, NW China). Journal of Geosciences, 59(3): 275-290.
      [44] Yuan, Y.X., Pan, Z.X., Qian, Y.Z., 2002. Cu, Ni-Bearing Property Evaluation of Xingdi Complex No. 2 in Kuruktage, Xinjiang. Xinjiang Geology, 20(1): 49-52 (in Chinese with English abstract).
      [45] Zhai, Y.S., Yao, S.Z., Cui, B., et al., 1996. Research on Metallogenic Series. China University of Geosciences Press, Wuhan (in Chinese).
      [46] Zhang, C.L., Li, H.K., Santosh, M., et al., 2012a. Precambrian Evolution and Cratonization of the Tarim Block, NW China: Petrology, Geochemistry, Nd-Isotopes and U-Pb Zircon Geochronology from Archaean Gabbro-TTG-Potassic Granite Suite and Paleoproterozoic Metamorphic Belt. Journal of Asian Earth Sciences, 47: 5-20. doi: 10.1016/j.jseaes.2011.05.018
      [47] Zhang, C. L, Zou, H. B, Wang, H. Y, et al., 2012b. Multiple Phases of the Neoproterozoic Igneous Activity in Quruqtagh of the Northeastern Tarim Block, NW China: Interaction between Plate Subduction and Mantle Plume?Precambrian Research, 222-223: 488-502. doi: 10.1016/j.precamres.2011.08.005
      [48] Zhang, C.L., Li, X.H., Li, Z X., et al., 2007. Neoproterozoic Ultramafic-Mafic-Carbonatite Complex and Granitoids in Quruqtagh of Northeastern Tarim Block, Western China: Geochronology, Geochemistry and Tectonic Implications. Precambrian Research, 152(3-4): 149-169. doi: 10.1016/j.precamres.2006.11.003
      [49] Zhang, C.L., Yang, D.S., Wang, H.Y., et al., 2011. Neoproterozoic Mafic-Ultramafic Layered Intrusion in Quruqtagh of Northeastern Tarim Block, NW China: Two Phases of Mafic Igneous with Different Mantle Sources. Gondwana Research, 19(1): 177-190. doi: 10.1016/j.gr.2010.03.012
      [50] Zhang, C.L., Zou, H. . B., Li, H.K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China. Gondwana Research, 23: 1306-131. doi: 10.1016/j.gr.2012.05.009
      [51] Zhao, T.P., Chen, F.K., Zhai, M.G., et al., 2004. Single Zircon U-Pb Ages and Their Geological Significance of the Damiao Anorthosite Complex, Hebei Province, China. Acta Petrologica Sinica, 20(3): 685-690 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200403032.htm
      [52] 蔡志慧, 许志琴, 唐哲民, 等, 2011. 塔里木盆地东北缘库鲁克塔格地区的早古生代地壳变形以及造山时限. 中国地质, 38(4): 855-867. doi: 10.3969/j.issn.1000-3657.2011.04.006
      [53] 曹晓峰, 2012. 新疆库鲁克塔格新元古代-早古生代构造热事件与成矿(博士学位论文). 武汉: 中国地质大学.
      [54] 曹晓峰, 吕新彪, 高翔, 等, 2012. 新疆库鲁克塔格前寒武纪地块岩浆热事件及构造演化. 新疆地质, 30(4): 384-391. doi: 10.3969/j.issn.1000-8845.2012.04.003
      [55] 曹晓峰, 吕新彪, 雷建华, 等, 2010. 新疆库鲁克塔格东缘新元古代大平梁铜多金属矿床地质特征及成因探讨?矿床地质, 29(增刊): 167-168. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1088.htm
      [56] 邓兴梁, 舒良树, 朱文斌, 等, 2008. 新疆兴地断裂带前寒武纪构造岩浆变形作用特征及其年龄. 岩石学报, 24(12): 2800-2808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812015.htm
      [57] 董连慧, 冯京, 刘德权, 等, 2010. 新疆成矿单元划分方案研究. 新疆地质, 28(1): 1-15. doi: 10.3969/j.issn.1000-8845.2010.01.001
      [58] 董连慧, 徐兴旺, 赵树铭, 2012. 新疆库鲁克塔格1.95 Ga磁铁石英岩建造(BIF)发现及意义. 新疆地质, 30(4): 371-376. doi: 10.3969/j.issn.1000-8845.2012.04.001
      [59] 段吉业, 夏德馨, 安素岚, 2005. 新疆库鲁克塔格新元古代-早古生代裂陷槽深水沉积与沉积-构造古地理. 地质学报, 79(1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501001.htm
      [60] 冯本智, 周裕文, 迟仕福, 等, 1995. 新疆库鲁克塔格地区前震旦纪地质与贵重、有色金属矿床. 北京: 地质出版社.
      [61] 高振家, 1990. 再论天山地区前寒武纪地层问题. 新疆地质, 8(1): 80-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199001008.htm
      [62] 郭召杰, 张志诚, 刘树文, 等, 2003. 塔里木克拉通早前寒武纪基底层序与组合: 颗粒锆石U-Pb年龄新证据. 岩石学报, 19(3): 537-542. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303019.htm
      [63] 胡蔼琴, 王中刚, 涂光炽, 等, 1997. 新疆北部地质演化及成岩成矿规律. 北京: 科学出版社.
      [64] 胡霭琴, 韦刚健, 2006. 塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题. 地质学报, 80(1): 126-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601017.htm
      [65] 胡世玲, 王松山, 桑海清, 等, 1990. 大庙斜长岩同位素地质年龄、稀土地球化学及其地质意义. 地质科学, 4: 332-343. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199004003.htm
      [66] 姜常义, 卢登蓉, 白开寅, 等, 2005. 大陆岩石圈地幔交代作用的产物——且干布拉克蛭石矿床. 岩石学报, 21(1): 201-210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501020.htm
      [67] 李华芹, 陈富文, 2004. 中国新疆区域成矿作用年代学. 北京: 地质出版社.
      [68] 李铨, 于海峰, 修群业, 2002. 东天山前寒武纪基底若干问题的讨论. 新疆地质, 20(4): 346-351. doi: 10.3969/j.issn.1000-8845.2002.04.011
      [69] 李相然, 1994. 塔里木盆地北缘兴地断裂构造变形特征. 新疆地质, 12(3): 209-218. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI403.002.htm
      [70] 洛长义, 杨合群, 朱宝清, 等, 1998. 论新疆兴地基性超基性杂岩分带性. 西北地质科学, 19(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFK199801001.htm
      [71] 孙宝生, 黄建华, 2007. 新疆且干布拉克超基性岩-碳酸岩杂岩体Sm-Nd同位素年龄及其地质意义. 岩石学报, 23(7): 1611-1616. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707005.htm
      [72] 孙晓猛, 王璞珺, 刘鹏举, 等, 2006. 兴地断裂构造特征及其演化历史. 新疆地质, 24(4): 348-352. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200604002.htm
      [73] 郗国庆, 2011. 卡乌留克塔格地区地质及磁异常特征. 化工矿产地质, 33(2): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201102012.htm
      [74] 夏学惠, 谭云基, 武奕立, 等, 2008. 新疆库鲁克塔格地区铁磷矿成矿条件及找矿预测. 化工矿产地质, 33(2): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC200802008.htm
      [75] 夏学惠, 袁家忠, 郗国庆, 等, 2009. 塔里木地台北缘内生磷矿预测及资源远景评价. 化工矿产地质, 31(3): 129-158. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC200903003.htm
      [76] 夏学惠, 袁家忠, 郗国庆, 等, 2010. 新疆大西沟杂岩体地球化学及铁磷矿床特征. 吉林大学学报(地球科学版), 40(4): 879-885. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004019.htm
      [77] 夏昭德, 石福品, 胡秀军, 等, 2009. 新疆库鲁克塔格地区兴地Ⅱ号镁铁-超镁铁质岩体的地球化学特征与岩石成因. 岩石学报, 25(4): 805-816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904007.htm
      [78] 校培喜, 黄玉华, 王育习, 等, 2006. 新疆库鲁克塔格地块东南缘钾长花岗岩的地球化学特征及同位素测年. 地质通报, 25(6): 725-729. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200606012.htm
      [79] 许志琴, 李思田, 张建新, 等, 2011. 塔里木地块与古亚洲/特提斯构造体系的对接. 岩石学报, 27(1): 1-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101002.htm
      [80] 杨天奇, 1992. 新疆库鲁克塔格地区大、小金沟金矿化区成矿作用模式及找矿. 长春地质学院学报, 22(3): 290-296. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199203006.htm
      [81] 袁家忠, 夏学惠, 郗国庆, 等, 2010. 新疆奥尔塘铁磷矿地质特征及找矿意义. 化工矿产地质, 32(2): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201002007.htm
      [82] 袁英霞, 潘朝霞, 钱玉珍, 2002. 新疆库鲁克塔格兴地Ⅱ号岩体铜镍含矿性评价. 新疆地质, 20(1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200201010.htm
      [83] 翟裕生, 姚书振, 崔彬, 等, 1996. 成矿系列研究. 武汉: 中国地质大学出版社.
      [84] 赵太平, 陈福坤, 翟明国, 等, 2004. 河北大庙斜长岩杂岩体锆石U-Pb年龄及其地质意义. 岩石学报, 20(3): 685-690. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403032.htm
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  3484
    • HTML全文浏览量:  218
    • PDF下载量:  452
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-02-03
    • 刊出日期:  2015-06-15

    目录

      /

      返回文章
      返回