Ore-Forming Fluid Geochemical Characteristics and Genesis of Pb-Zn Deposit in Hongling, Inner Mongolia
-
摘要: 红岭铅锌矿是内蒙古东南部的大型代表性矿床之一.目前,对该矿床成矿流体地球化学特征、性质及演化问题尚缺乏系统研究.对其展开了系统的流体包裹体研究.结果表明,矿区矽卡岩期Ⅰ阶段石榴石中发育含NaCl子矿物三相(SL)、气相-富气相(LV)及气液两相(VL)3种类型的原生流体包裹体,Ⅱ阶段中石英颗粒主要发育LV和VL两种类型原生流体包裹体,测温结果表明矽卡岩期成矿流体属中-高温、高盐度的不均匀NaCl-H2O体系热液,在成矿过程中发生过沸腾作用而导致铅、锌、铜等有用元素沉淀富集.石英-硫化物期Ⅲ→Ⅵ阶段中矿物均主要发育较单一的VL型包裹体,其中Ⅲ阶段热液均一温度较矽卡岩期明显降低,而盐度没有明显变化;Ⅳ阶段成矿流体均一温度明显增高、盐度明显降低,反映了有新的高温、低盐度体系热液的加入;而Ⅴ→Ⅵ阶段成矿流体均一温度及盐度逐渐降低,体现了一种不断与外来天水混合的演变趋势;整体上看,石英-硫化物期流体为简单的中-低温、低盐度NaCl-H2O体系热液.流体包裹体C、H、O同位素研究表明,红岭矿床矽卡岩期Ⅱ阶段成矿流体以岩浆水为主;石英-硫化物期成矿流体源自大气降水与岩浆水的混合流体,晚阶段逐渐演化为以大气降水为主.矿床S、Pb同位素研究表明,区内成矿物质具深源特点.Abstract: Hongling lead-zinc deposit is one of the representative large deposits in southeastern Inner Mongolia. Presently, there's very little research on geochemical characteristics and evolution of ore-form fluids, and ore genesis. The fluid inclusions are systemly researched in this paper, The results show that there are three types of primary fluid inclusions in garnet of garnet-skarn stage (Ⅰ) including halite-bearing three-phase, aqueous two-phase as well as vapor-rich two-phase; there are two types of primary fluid inclusions in quartz of stage (Ⅱ) including aqueous two-phase as well as vapor-rich two-phase. It is found in our microthermometric study that the ore-forming fluid is of high temperature, high salinity and immiscible NaCl-H2O type solutions and the boiling process plays important role in the precipitation of Pb, Zn, and Cu. Quartz of mineralization stage Ⅲ to Ⅳ of quartz-sulfide epochs contains only aqueous two-phase of fluid inclusions. The homogenization temperature of this type of fluid inclusions is obviously lower than that of skarn epoch, while the salinity does not obviously change. The homogenization temperatures of fluid inclusions show a rising trend with salinities displaying a dropping trend of stage Ⅳ, and it may be caused by adding of high temperature, low salinity type fluid. The dropping of homogenization temperatures and salinities of ore-forming fluids from mineralization stages Ⅴ to Ⅵ suggests that meteoric water continuously joining into the ore-forming fluid. Overall, the ore-forming fluids of quartz-sulfide epoch is of medium-low temperature and low salinity NaCl-H2O type solutions. C, H, O isotope study of fluid inclusions shows that the ore-forming fluids of skarn epoch mainly came from magmatic water and that of quartz-sulfide epoch came from mixed magmatic water and meteoric water, whereas at the latest stage of mineralization, the ore-forming fluids mainly came from meteoric water. The study of S, Pb isotopes implies that the ore-forming materials posed a deep source feature.
-
图 1 红岭铅锌矿区大地构造位置(a)及矿床地质图(b)
万多等,2014.1.第四系;2.上侏罗统满克头鄂博组;3.中二叠统大石寨组砂岩、粉砂岩、板岩等;4.中二叠统大石寨组大理岩;5.断层;6.晚侏罗世中粗粒花岗岩;7.花岗斑岩脉;8.闪长玢岩脉;9.铅锌矿体;10.矽卡岩;11.地名;12.勘探线
Fig. 1. Tectonic location and deposit geology of Hongling Pb-Zn district
图 2 红岭铅锌矿床不同成矿阶矿脉穿切关系
Ⅰ.石榴石-矽卡岩阶段;Ⅱ.磁铁矿-石英阶段;Ⅲ.方铅矿-闪锌矿±黄铁矿-石英阶段;Ⅳ.闪锌矿-黄铜矿-方铅矿-方解石阶段;Ⅴ.方铅矿-黄铜矿-方解石阶段;Ⅵ.晚期方解石阶段;a.Ⅲ阶段矿脉沿裂隙充填于Ⅰ阶段矽卡岩之中,而Ⅳ阶段明显破坏了前者;b.Ⅱ阶段充填于Ⅰ阶段石榴石-矽卡岩之中,Ⅳ阶段矿脉穿切Ⅲ阶段矿脉;c.Ⅴ阶段穿切Ⅳ阶段矿脉;d.根据矿脉间穿切关系判断从早到晚依次为Ⅰ、Ⅲ、Ⅴ、Ⅵ阶段;e.Ⅵ阶段方解石穿切Ⅳ阶段矿体
Fig. 2. Photographs of different stages sample in Hongling Pb-Zn polymetallic deposit
表 1 不同类型岩、矿石透明矿物中流体包裹体测温结果
Table 1. The microthermometric results of fluid inclusions in quartz of different metallogenic stages
矿化阶段 包裹体类型(数量) 大小(μm) 气液比(%) 子矿物比例(%) 冰点温度(℃) 均一温度(℃) 子矿物熔化温度(℃) 盐度(%NaCl equiv.) 密度(g·cm-3) Ⅰ SL(7) 9~15 20~30 15~25 384~403 251~315 35.0~39.0 1.09~1.10 LV(13) 7~20 55~90 -2.9~-4.6 354~414 5.3~7.3 0.50~0.71 VL(27) 5~25 20~45 -5.4~-8.9 329~421 8.0~12.7 0.63~0.79 Ⅱ LV(4) 8~10 55~75 -3.2~-6.9 308~439 5.2~10.4 0.77~0.85 VL(36) 6~20 20~45 -6.2~-10.9 284~365 9.5~14.9 0.80~1.05 Ⅲ VL(30) 5~28 10~40 -6.5~-8.8 178~266 9.5~12.6 0.86~0.98 Ⅳ VL(15) 8~15 20~40 -2.9~-4.1 286~355 4.7~6.5 0.66~0.80 Ⅴ VL(30) 5~25 10~40 -1.2~-4.2 145~265 2.0~6.7 0.84~0.94 Ⅵ VL(6) 5~10 5~10 -0.7~-1.7 112~162 1.2~2.8 0.93~0.96 表 2 研究区流体包裹体碳、氢、氧同位素分析结果
Table 2. The analysized results of carbon, hydrogen and oxygen isotopes of fluid inclusions
成矿阶段 δ18Oq-SMOW(‰) δDH2O-SMOW(‰) δ13Cv-PDB(‰) 均一温度(℃) δ18OH2O-SMOW(‰) Ⅱ 5.7 -127.3 -5.0 400 2.45 5.9 -130.5 -5.8 400 2.65 Ⅳ -2.0 -125.5 -9.7 300 -7.58 4.1 -132.2 -5.8 300 -1.48 Ⅴ 0.5 -136.0 -7.2 200 -9.04 -4.8 -144.1 -10.2 200 -14.34 表 3 红岭铅锌矿床硫同位素特征
Table 3. Sulfur isotope distribution of Hongling Pb-Zn deposit
样品号 测试内容 分析结果δ34SCDT(‰) HL-1 黄铜矿 -1.1 HL-2 黄铜矿 -1.2 HL-3 黄铜矿 -1.6 HL-4 闪锌矿 -0.9 HL-5 闪锌矿 -1.4 HL-6 闪锌矿 -1.6 HL-7 方铅矿 -2.0 HL-8 方铅矿 -2.7 HL-9 方铅矿 -2.3 -
[1] Bai, D.M., Fu, G.L., Nei, F.J., et al., 2011. Integrated Ore-Prospecting Model for the Skarn Polymetallic Deposit in Southeastern Inner Mongolia. Journal of Jilin University (Earth Science Edition), 41(6): 1968-1976 (in Chinese with English abstract). http://www.researchgate.net/publication/288737558_Integrated_ore-prospecting_model_for_the_skarn_polymetallic_deposit_in_southeastern_Inner_Mongolia [2] Bai, D.M., Liu, G.H., 1996. Application of Geologic, Geophysical, Geochemical Peospecting Method in the Haobugao Pb-Zn-Sn-Cu Polymetallic Deposit. Geological Exploration for Non-Ferrous Metals, 5(6): 361-367 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS606.006.htm [3] Baker, T., Van, A.E., Ryan, C.G., et al., 2004. Composition and Evolution of Ore Fluids in a Magmatic-Hydrothermal Skarn Deposit. Geology, 32(2): 117-120. doi: 10.1130/G19950.1 [4] Brown, P.E., Hagemann, S.G., 1995. MacFlincor and Its Application to Fluids in Archean Lode-Gold Deposits. Geochimica et Cosmochimica Acta, 59(19): 3943-3952. doi: 10.1016/0016-7037(95)00254-W [5] Calagari, A.A., 2004. Fluid Inclusion Studies in Quartz Veinlets in the Porphyry Copper Deposit at Sungun, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, 23(2): 179-189. doi: 10.1016/S1367-9120(03)00085-3 [6] Chen, Y.Q., Huang, J.N., Lu, Y.X., et al., 2009. Geochemistry of Elements, Sulphur-Lead Isotopes and Fluid Inclusions from Jinla Pb-Zn-Ag Poly-Metallic Ore Field at the Joint Area across China and Myanmar Border. Earth Science—Journal of China University of Geosciences, 34(4): 585-594 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.063 [7] Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972. Oxygen Isotope Exchange between Quartz and Water. Geophys. Res., 77: 3057-3067. doi: 10.1029/JB077i017p03057 [8] Deng, J., Yang, L.Q., Gao, B.F., et al., 2009. Fluid Evolution and Metallogenic Dynamics during Tectonic Regime Transition: Example from the Jiapigou Gold Belt in Northeast China. Resource Geology, 59(2): 140-152. doi: 10.1111/j.1751-3928.2009.00086.x [9] Driesner, T., 1997. The Effect of Pressure on Deuterium-Hydrogen Fractionation in High-Temperature Water. Science, 277(5327): 91-794. [10] Drummond, S.E., Ohmoto, H., 1985. Chemical Evolution and Mineral Deposition in Boiling Hydrothermal Systems. Econ. Geol., 80: 126-147. doi: 10.2113/gsecongeo.80.1.126 [11] Heinrich, C.A., 2007. Fluid-Fluid Interact Ions in Magmatic-Hydrothermal Ore Formation. Reviews in Mineralogy and Geochemistry, 65: 1-363. doi: 10.2138/rmg.2007.65.1 [12] Horita, J., Driesner, T., Cole, D.R., 1999. Pressure Effect on Hydrogen Isotope Fractionation between Brucite and Water at Elevated Temperatures. Science, 286(5444): 1545-1547. doi: 10.1126/science.286.5444.1545 [13] Leng, C.B., Zhang, X.C., Wang, S.X., et al., 2009. Advances of Researches on the Evolution of Ore-Forming Fluids and the Vapor Transport of Metals in Magmatic-Hydrothermal Systems. Geological Review, 55(1): 100-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200901016.htm [14] Li, J., Chen, Y.J., Li, Q.Z., et al., 2007. Fluid Inclusion Geochemistry and Genetic Type of the Yangshan Gold Deposit, Gansu, China. Acta Petrologica Sinica, 23(9): 2144-2154 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200709013.htm [15] Logan, M.A., 1999. Mineralogy and Geochemistry of the Gualilean Skarn Deposit in the Precordillera of Western Argentina. Ore Geology Reviews, 17: 113-138. http://www.sciencedirect.com/science/article/pii/S0169136800000093 [16] O'Neil, J.R., Clayton, R.N., Mayeda, T.K., 1969. Oxygen Isotope Fractionation in Divalent Metal Carbonates. Journal of Chemical Physics, 51(12): 5547-5558. doi: 10.1063/1.1671982 [17] Reed, M.H., Spycher, N.F., 1985. Boiling, Cooling and Oxidation in Epithermal Systems: A Numerical Modeling Approach. Reviews in Economic Geology, 2: 249-272. http://www.researchgate.net/publication/284097406_Boiling_cooling_and_oxidation_in_epithermal_systems_A_numerical_modeling_approach [18] Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, 12. Book Crafters, Michigan. [19] Shan, L., Zheng, Y.Y., Xu, R.K., et al., 2009. Review on Sulfur Isotopic Tracing and Hydrothermal Metallogenesis. Geology and Resources, 18(3): 197-203 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-resources_thesis/0201253441849.html [20] Sheng, J.F., Fu, X.Z., 1999. Geological Setting and Copper-Polymetallic Deposits in the Central Part of the Da Hinggan Mountains. Seismological Press, Beijing (in Chinese). [21] Wan, D., Li, J.F., Wang, Y.C., et al., 2014. Re-Os Radiometric Dating of Molybdenite in Hongling Lead-Zinc Polymetallic Deposit, Inner Mongolia, and Its Significance. Earth Science—Journal of China University of Geosciences, 39(6): 687-695 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.064 [22] Wang, K.Y., Qing, M., Sun, F.Y., et al., 2010. Study on the Geochemical Characteristics of Ore-Forming Fluids and Genesis of Xiaoxinancha Gold-Copper Deposit, Jilin Province. Acta Petrologica Sinica, 26(12): 3727-3734 (in Chinese with English abstract). http://www.oalib.com/paper/1474915 [23] Wang, L.J., Wang, J.B., Wang, Y.W., et al., 2004. Oxygen Isotope Characteristics of Granite Related to the Skarn Type Deposit in Eastevn Inner Mongolia—Taking Haobugao Deposit as an Example. Geological Review, (5): 513, 560 (in Chinese). doi: 10.1111/j.1751-3928.2004.tb00201.x [24] Xiao, Q.H., Deng, J.F., Ma, D.Q., et al., 2002. The Way of Investigation on Granitoids. Geological Publishing House, Beijing (in Chinese). [25] Xiong, S.F., He, M.C., Yao, S.Z., et al., 2014. Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing'an Range: Implications for Ore Genesis. Earth Science—Journal of China University of Geosciences, 39(7): 820-836 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.077 [26] Yang, L. Y, Yang, L.Q., Yuan, W.M., et al., 2013. Origin and Evolution of Ore Fluid for Orogenic Gold Traced by D-O Isotopes: A Case from the Jiapigou Gold Belt, China. Acta Petrologica Sinica, 29(11): 4025-4035 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201311031.htm [27] Yang, Z.H., Wang, J.P., Liu, J.J., et al., 2012. Characteristics and Its Geological Significance of Fluid Inclusions of the Wurinitu W-Mo Deposit in Inner Mongolia, China. Earth Science—Journal of China University of Geosciences, 37(6): 1268-1278 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201206024.htm [28] Yao, M.J., Liu, J.J., Zhai, D.G., et al., 2012. Sulfur and Lead Isotopic Compositions of the Polymetallic Deposits in the Southern Daxing'anling: Implications for Metal Sources. Journal of Jilin University (Earth Science Edition), 42(2): 362-373 (in Chinese with English abstract). http://www.researchgate.net/publication/282507766_Sulfur_and_lead_isotopic_compositions_of_the_polymetallic_deposits_in_the_Southern_Daxing'anling_Implications_for_metal_sources [29] Yao, Y., Murphy, P., Robb, L.J., 2001. Fluid Characteristics of Granitoid-Hosted Gold Deposits in the Birimian Terrane of Ghana: A Fluid Inclusion Microthermometric and Raman Spectroscopic Study. Econ. Geol., 96(7): 1611-1643. doi: 10.2113/gsecongeo.96.7.1611 [30] Zhang, L.G., 1985. The Application of the Stable Isotope to Geology. Shaanxi Science and Technology Press, Xi'an, 91-94 (in Chinese). [31] Zhang, R.B., Liu, J.M., Ye, J., et al., 2003. C & O Isotopic Geochemistry of Shouwangfen Copper Deposit, Hebei Province. Mineral Resources and Geology, 17(2): 122-126 (in Chinese with English abstract). [32] Zhao, Y.M., Tan, H.J., Yuan, R.G., et al., 1980. Discovery of the Cl-Bearing Amphibole in the Iron Skarn Deposits of Southwestern Fujian, and Its Geological Significance. Geological Review, 26(4): 300-306 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-review_thesis/0201253290513.html [33] Zheng, Y.F., Chen, J.F., 2000. Stable Isotope Geochemistry. Science Press, Beijing (in Chinese). [34] Zhou, T.F., Yuan, F., Yue, S.C., et al., 2007. Geochemistry and Evolution of Ore-Forming Fluids of the Yueshan Cu-Au Skarn and Vein-Type Deposits, Anhui Province, South China. Ore Geology Reviews, 3: 279-303. http://www.sciencedirect.com/science/article/pii/S0169136806000515 [35] 白大明, 付国立, 聂风军, 等, 2011. 内蒙古东南部矽卡岩型金属矿床的综合找矿模式. 吉林大学学报(地球科学版), 41(6): 1968-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106026.htm [36] 白大明, 刘光海, 1996. 浩布高铅锌铜锡矿床地物化综合找矿模式探讨. 有色金属矿产与勘查, 5(6): 361-367. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS606.006.htm [37] 陈永清, 黄静宁, 卢映祥, 等, 2009. 中缅毗邻区金腊Pb-Zn-Ag多金属矿田元素、稳定同位素和流体包裹体地球化学. 地球科学——中国地质大学学报, 34(4): 585-594. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200904004.htm [38] 冷成彪, 张兴春, 王守旭, 等, 2009. 岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展. 地质论评, 55(1): 100-112. doi: 10.3321/j.issn:0371-5736.2009.01.012 [39] 李晶, 陈衍景, 李强之, 等, 2007. 甘肃阳山金矿流体包裹体地球化学和矿床成因类型. 岩石学报, 23(9): 2144-2154. doi: 10.3969/j.issn.1000-0569.2007.09.013 [40] 陕亮, 郑有业, 许荣科, 等, 2009. 硫同位素示踪与热液成矿作用研究. 地质与资源, 18(3): 197-203. doi: 10.3969/j.issn.1671-1947.2009.03.007 [41] 盛继福, 傅先政, 1999. 大兴安岭中段成矿环境与铜多金属矿床地质特征. 北京: 地震出版社. [42] 万多, 李剑锋, 王一存, 等, 2014. 内蒙古红岭铅锌多金属矿床辉钼矿Re-Os同位素年龄及其意义. 地球科学——中国地质大学学报, 39(6): 687-695. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201406004.htm [43] 王可勇, 卿敏, 孙丰月, 等, 2010. 吉林小西南岔金-铜矿床成矿流体地球化学特征及矿床成因研究. 岩石学报, 26(12): 3727-3734. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012025.htm [44] 王莉娟, 王京彬, 王玉往, 等, 2004. 内蒙古东部与矽卡岩型矿床有关的花岗岩氧同位素特征——以浩布告矿床为例. 地质评论, (5): 513, 560. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200405010.htm [45] 肖庆辉, 邓晋福, 马大铨, 等, 2002. 花岗岩研究思维与方法. 北京: 地质出版社. [46] 熊索菲, 何谋惷, 姚书振, 等, 2014. 大兴安岭岔路口斑岩钼矿床流体成分及成矿意义. 地球科学——中国地质大学学报, 39(7): 820-836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407005.htm [47] 杨利亚, 杨立强, 袁万明, 等, 2013. 造山型金矿成矿流体来源与演化的氢-氧同位素示踪: 夹皮沟金矿带例析. 岩石学报, 29(11): 4025-4035. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311031.htm [48] 杨增海, 王建平, 刘家军, 等, 2012. 内蒙古乌日尼图钨钼矿床成矿流体特征及地质意义. 地球科学——中国地质大学学报, 37(6): 1268-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201206024.htm [49] 要梅娟, 刘家军, 翟德高, 等, 2012. 大兴安岭南段多金属成矿带硫、铅同位素组成及其地质意义. 吉林大学学报(地球科学版), 42(2): 362-373. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201202012.htm [50] 张理刚, 1985. 稳定同位素在地质科学中的应用. 西安: 陕西科学技术出版社, 91-94. [51] 张瑞斌, 刘建明, 叶杰, 等, 2003. 河北寿王坟铜矿碳-氧同位素地球化学特征及其意义. 矿产与地质, 17(2): 122-126. doi: 10.3969/j.issn.1001-5663.2003.02.002 [52] 赵一鸣, 谭惠静, 袁润光, 等, 1980. 含氯角闪石在闽西南矽卡岩铁矿床中的发现及其地质意义. 地质论评, 26(4): 300-306. doi: 10.3321/j.issn:0371-5736.1980.04.004 [53] 郑永飞, 陈江峰, 2000. 稳定同位素地球化学. 北京: 科学出版社.