• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征

    敬海鑫 孙德有 苟军 武鹏飞 王天豪 郭宏宇 柳小明 胡兆初

    敬海鑫, 孙德有, 苟军, 武鹏飞, 王天豪, 郭宏宇, 柳小明, 胡兆初, 2015. 兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征. 地球科学, 40(6): 982-994. doi: 10.3799/dqkx.2015.082
    引用本文: 敬海鑫, 孙德有, 苟军, 武鹏飞, 王天豪, 郭宏宇, 柳小明, 胡兆初, 2015. 兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征. 地球科学, 40(6): 982-994. doi: 10.3799/dqkx.2015.082
    Jing Haixin, Sun Deyou, Gou Jun, Wu Pengfei, Wang Tianhao, Guo Hongyu, Liu Xiaoming, Hu Zhaochu, 2015. Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block. Earth Science, 40(6): 982-994. doi: 10.3799/dqkx.2015.082
    Citation: Jing Haixin, Sun Deyou, Gou Jun, Wu Pengfei, Wang Tianhao, Guo Hongyu, Liu Xiaoming, Hu Zhaochu, 2015. Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block. Earth Science, 40(6): 982-994. doi: 10.3799/dqkx.2015.082

    兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征

    doi: 10.3799/dqkx.2015.082
    基金项目: 

    国家自然科学基金项目 41172058

    详细信息
      作者简介:

      敬海鑫(1988-),男,硕士研究生,主要从事火成岩研究.E-mail: jing_hai_xin@126.com

      通讯作者:

      孙德有,E-mail: sundy@jlu.edu.cn

    • 中图分类号: P588.1; P59

    Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block

    • 摘要: 兴凯地块南部构造演化复杂,缺乏精确的年代学证据和系统的地球化学研究.锆石U-Pb年龄测定结果表明:兴凯地块南部花岗岩侵位结晶年龄为晚三叠世末期(202~205 Ma),处于古亚洲洋和古太平洋构造体制的转换阶段.地球化学成分上,二长花岗岩和花岗闪长岩均以富硅(SiO2=69.61%~77.27%)、弱过铝(Al2O3=12.70%~15.28%)、较富碱(AKI=0.64~0.88)为特征.结合角闪石矿物的出现、较低的锆石饱和温度(TZr=679~787 ℃)等特征表明本区花岗岩为分异的Ⅰ型花岗岩.锆石的176Hf/177Hf比值较高(0.282 773~0.282 913),εHf(t)均为正值(4.39~9.32),二阶段Hf模式年龄较为年轻(0.65~0.96 Ga),反映其源区物质为新元古代期间从亏损地幔新增生的年轻地壳物质.结合岩石形成年龄、岩石组合等特征可以推断岩石应该形成于西太平洋开始俯冲的活动大陆边缘环境下.

       

    • 图  1  兴凯地块南部地质简图

      据黑龙江省地质局第一区测队1∶20万地质图,1984;邵济安和唐克东,1995刘永江等,2010

      Fig.  1.  Sketch geological map of southern Xingkai block

      图  2  兴凯地块南部花岗岩锆石U-Pb年龄谐和图

      Fig.  2.  Zircon U-Pb concordian diagrams of the granite from southern Xingkai block

      图  3  兴凯地块南部花岗岩K2O-SiO2(a)与A/CNK-A/NK图解(b)

      Fig.  3.  The K2O-SiO2 (a) and A/CNK-A/NK relations (b) of the granites from southern Xingkai block

      图  4  兴凯地块南部花岗岩Harker图

      Fig.  4.  Harker diagrams of the granites from southern Xingkai block

      图  5  兴凯地块南部花岗岩稀土元素配分模式图和微量元素蛛网图

      球粒陨石和原始地幔标准化值据Sun and McDonough, 1989

      Fig.  5.  Chondrite-normalized REE distribution pattern and Primitive mantle-normalized spidergram of granites batholith from southern Xingkai block

      图  6  兴凯地块花岗岩Y-Rb图解

      Fig.  6.  Y-Rb relation of the granites from Xingkai block

      图  7  花岗岩成因类型判别图解

      Fig.  7.  Genectic type discrimination for the granites

      图  8  兴凯地块南部花岗岩Lu-Hf同位素相关性(a)和Hf同位素演化图解(b)

      Fig.  8.  Lu-Hf isotope relation (a) and Hf isotope evolution (b) of granites in southern Xingkai block

      图  9  花岗岩构造环境判别图解

      图a据Thieblemont and Tagyey(1994);图b据Brown et al.(1984)

      Fig.  9.  Granite tectonic discrimination

      表  1  兴凯地块南部花岗岩锆石U-Pb同位素分析结果

      Table  1.   Zircon U-Pb dating results of the granite from southern Xingkai block

      样品测点 Th/U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ t(Ma)
      207Pb/235U ±1σ 206Pb/238U ±1σ
      JX1304-01 0.57 0.066 15 0.002 17 0.294 33 0.010 05 0.032 29 0.000 45 262 8 205 3
      JX1304-02 0.44 0.059 34 0.002 58 0.263 20 0.011 53 0.032 09 0.000 31 237 9 204 2
      JX1304-03 0.51 0.057 40 0.002 17 0.253 71 0.009 14 0.032 16 0.000 38 230 7 204 2
      JX1304-04 0.58 0.059 78 0.002 68 0.264 62 0.011 00 0.032 41 0.000 41 238 9 206 3
      JX1304-05 0.75 0.073 04 0.003 93 0.343 48 0.020 04 0.033 67 0.000 36 300 15 213 2
      JX1304-06 0.42 0.050 70 0.001 62 0.223 80 0.007 00 0.031 89 0.000 30 205 6 202 2
      JX1304-07 0.49 0.104 47 0.005 28 0.488 51 0.026 56 0.033 19 0.000 39 404 18 210 2
      JX1304-08 0.40 0.051 93 0.001 89 0.230 40 0.007 71 0.032 22 0.000 34 211 6 204 2
      JX1304-09 0.39 0.055 50 0.002 33 0.247 18 0.009 93 0.032 30 0.000 33 224 8 205 2
      JX1304-10 0.43 0.065 88 0.002 53 0.293 99 0.010 89 0.032 21 0.000 32 262 9 204 2
      JX1304-11 0.38 0.063 55 0.002 42 0.284 17 0.011 39 0.032 03 0.000 32 254 9 203 2
      JX1304-12 0.49 0.053 43 0.001 75 0.238 37 0.007 55 0.032 24 0.000 36 217 6 205 2
      JX1304-13 0.56 0.054 37 0.002 22 0.236 75 0.009 31 0.031 66 0.000 39 216 8 201 2
      JX1304-14 0.41 0.059 53 0.001 75 0.265 87 0.007 48 0.032 27 0.000 31 239 6 205 2
      JX1304-15 0.47 0.057 06 0.001 57 0.273 08 0.007 87 0.034 36 0.000 41 245 6 218 3
      JX1304-16 0.56 0.051 05 0.002 23 0.225 15 0.009 16 0.032 15 0.000 40 206 8 204 2
      1322-1-01 0.36 0.053 19 0.002 83 0.239 30 0.013 07 0.032 34 0.000 51 218 11 205 3
      1322-1-02 0.52 0.089 08 0.003 99 0.521 84 0.027 16 0.041 01 0.000 44 426 18 259 3
      1322-1-03 0.27 0.048 25 0.002 13 0.216 07 0.009 73 0.032 35 0.000 61 199 8 205 4
      1322-1-04 0.46 0.050 66 0.002 71 0.228 06 0.011 43 0.032 86 0.000 44 209 9 208 3
      1322-1-05 0.45 0.049 01 0.002 23 0.220 46 0.009 75 0.032 56 0.000 51 202 8 207 3
      1322-1-06 0.42 0.048 17 0.001 79 0.221 49 0.007 56 0.033 18 0.000 39 203 6 210 2
      1322-1-07 0.37 0.046 43 0.001 70 0.211 85 0.007 57 0.032 78 0.000 35 195 6 208 2
      1322-1-08 0.26 0.049 78 0.001 70 0.218 11 0.007 08 0.031 54 0.000 30 200 6 200 2
      1322-1-09 0.43 0.055 47 0.002 10 0.252 29 0.008 70 0.033 14 0.000 62 228 7 210 4
      1322-1-10 0.38 0.057 17 0.001 86 0.261 45 0.008 38 0.033 02 0.000 49 236 7 209 3
      1322-1-11 0.39 0.061 16 0.001 86 0.267 64 0.008 23 0.031 71 0.000 43 241 7 201 3
      1322-1-12 0.29 0.048 01 0.001 67 0.210 66 0.007 12 0.031 87 0.000 35 194 6 202 2
      1322-1-13 0.33 0.053 04 0.003 16 0.233 35 0.014 73 0.032 00 0.000 52 213 12 203 3
      1322-1-14 0.56 0.055 34 0.003 52 0.246 52 0.018 65 0.031 54 0.000 42 224 15 200 3
      1322-1-15 0.41 0.045 57 0.002 12 0.202 46 0.010 02 0.032 34 0.000 44 187 8 205 3
      1322-1-16 0.50 0.052 49 0.001 53 0.240 88 0.008 90 0.032 90 0.000 26 219 7 209 2
      1322-1-17 0.34 0.044 18 0.001 65 0.199 02 0.008 31 0.032 58 0.000 37 184 7 207 2
      1322-1-18 0.35 0.049 22 0.002 91 0.221 49 0.014 28 0.032 25 0.000 49 203 12 205 3
      1322-1-19 0.40 0.139 19 0.004 54 0.745 84 0.028 80 0.038 30 0.000 52 566 17 242 3
      1322-1-20 0.39 0.064 10 0.001 92 0.291 29 0.008 39 0.032 89 0.000 35 260 7 209 2
      1327-1-01 0.30 0.048 35 0.002 16 0.216 58 0.009 77 0.031 93 0.000 27 199 8 203 2
      1327-1-02 0.36 0.052 01 0.002 61 0.228 57 0.011 10 0.032 00 0.000 40 209 9 203 3
      1327-1-03 0.38 0.046 86 0.001 48 0.199 83 0.006 01 0.030 74 0.000 28 185 5 195 2
      1327-1-04 0.48 0.049 72 0.002 05 0.222 29 0.009 68 0.032 04 0.000 41 204 8 203 3
      1327-1-05 0.35 0.046 40 0.002 84 0.202 68 0.011 60 0.031 98 0.000 45 187 10 203 3
      1327-1-06 0.37 0.051 84 0.002 97 0.229 81 0.012 93 0.032 22 0.000 49 210 11 204 3
      1327-1-07 0.13 0.058 78 0.003 69 0.259 27 0.015 74 0.032 34 0.000 67 234 13 205 4
      1327-1-08 0.30 0.053 35 0.001 81 0.236 26 0.007 74 0.032 07 0.000 34 215 6 203 2
      1327-1-09 0.30 0.053 39 0.002 13 0.237 08 0.009 69 0.032 09 0.000 36 216 8 204 2
      1327-1-10 0.31 0.073 43 0.007 74 0.353 23 0.045 14 0.031 82 0.000 43 307 34 202 3
      1327-1-11 0.33 0.052 70 0.001 59 0.232 62 0.006 98 0.031 92 0.000 34 212 6 203 2
      1327-1-12 0.33 0.051 93 0.001 66 0.226 59 0.006 71 0.031 78 0.000 32 207 6 202 2
      1327-1-13 0.30 0.052 02 0.002 14 0.225 49 0.008 57 0.031 66 0.000 33 206 7 201 2
      1327-1-14 0.33 0.051 06 0.001 79 0.224 73 0.007 79 0.031 96 0.000 48 206 6 203 3
      1327-1-15 0.30 0.051 01 0.002 11 0.225 40 0.009 35 0.032 06 0.000 44 206 8 203 3
      1328-1-01 0.68 0.054 00 0.001 87 0.245 60 0.008 60 0.032 80 0.000 36 223 7 208 2
      1328-1-02 0.61 0.072 10 0.003 15 0.337 64 0.016 92 0.033 23 0.000 49 295 13 211 3
      1328-1-03 0.50 0.057 60 0.002 51 0.251 36 0.011 28 0.031 50 0.000 40 228 9 200 2
      1328-1-04 0.78 0.053 30 0.001 54 0.240 01 0.007 25 0.032 45 0.000 34 218 6 206 2
      1328-1-05 0.39 0.084 20 0.004 45 0.367 78 0.019 23 0.031 60 0.000 38 318 14 201 2
      1328-1-06 0.50 0.060 70 0.002 32 0.266 08 0.010 87 0.031 34 0.000 38 240 9 199 2
      1328-1-07 0.44 0.091 60 0.006 30 0.358 84 0.028 21 0.027 32 0.000 62 311 21 174 4
      1328-1-08 0.74 0.054 30 0.001 62 0.240 28 0.007 43 0.031 80 0.000 32 219 6 202 2
      1328-1-09 0.69 0.053 10 0.001 70 0.233 56 0.007 33 0.031 74 0.000 32 213 6 201 2
      1328-1-10 0.35 0.047 80 0.001 75 0.219 40 0.008 57 0.033 05 0.000 49 201 7 210 3
      1328-1-11 0.86 0.056 60 0.001 70 0.246 21 0.007 09 0.031 45 0.000 37 223 6 200 2
      1328-1-12 0.55 0.056 60 0.002 35 0.249 56 0.010 11 0.031 93 0.000 41 226 8 203 3
      1328-1-13 0.41 0.054 80 0.002 52 0.259 82 0.011 21 0.034 44 0.000 58 235 9 218 4
      1328-1-14 0.72 0.050 60 0.001 43 0.229 06 0.006 28 0.032 60 0.000 22 209 5 207 1
      1328-1-15 0.72 0.051 10 0.001 19 0.232 66 0.005 18 0.032 90 0.000 22 212 4 209 1
      1328-1-16 0.63 0.050 70 0.001 22 0.236 15 0.005 97 0.033 45 0.000 25 215 5 212 2
      1328-1-17 0.48 0.050 50 0.001 28 0.229 72 0.005 62 0.032 84 0.000 23 210 5 208 1
      1328-1-18 0.32 0.074 50 0.002 69 0.313 74 0.010 41 0.030 92 0.000 43 277 8 196 3
      1328-1-19 0.73 0.056 80 0.002 23 0.447 88 0.018 68 0.056 46 0.000 62 376 13 354 4
      1328-1-20 0.83 0.055 00 0.001 69 0.241 12 0.007 36 0.031 54 0.000 27 219 6 200 2
      下载: 导出CSV

      表  2  兴凯地块花岗岩地球化学分析结果

      Table  2.   Geochemical data of granites in Xingkai block

      样品号 二长花岗岩 花岗闪长岩
      JX1302 JX1304 JX1305 JX1306 1322 1328 1303 1327
      SiO2 75.73 74.24 75.16 77.27 76.42 76.02 69.61 69.98
      TiO2 0.10 0.16 0.13 0.05 0.10 0.09 0.31 0.34
      Al2O3 12.74 13.15 12.85 12.70 12.70 12.91 15.28 15.04
      TFe2O3 1.45 2.02 1.65 0.80 1.30 1.46 3.52 3.41
      MnO 0.03 0.04 0.04 0.02 0.02 0.03 0.08 0.06
      MgO 0.13 0.26 0.17 0.07 0.11 0.16 0.47 0.55
      CaO 0.74 1.12 0.94 0.55 0.71 0.92 2.14 2.83
      Na2O 3.79 3.85 3.86 3.53 3.59 3.84 4.96 4.07
      K2O 4.41 4.17 4.23 4.67 4.80 4.18 2.87 2.64
      K2O+Na2O 8.20 8.02 8.09 8.20 8.39 8.02 7.83 6.71
      P2O5 0.02 0.03 0.02 0.01 0.02 0.02 0.07 0.08
      LOI 0.45 0.58 0.34 0.60 0.39 0.46 0.53 0.53
      Total 99.65 99.72 99.45 100.35 100.16 100.09 99.94 99.53
      K2O/Na2O 1.16 1.08 1.10 1.32 1.33 1.09 0.58 0.65
      A/NK 1.16 1.21 1.17 1.17 1.14 1.19 1.36 1.57
      A/CNK 1.03 1.02 1.02 1.07 1.02 1.03 1.01 1.02
      Mg# 0.15 0.21 0.20 0.17 0.15 0.14 0.24 0.18
      Ga 18.60 21.20 18.80 17.50 16.60 18.60 20.30 17.70
      Rb 153.00 89.40 114.00 147.00 161.00 204.00 72.70 140.00
      Sr 61.70 194.50 107.50 66.40 59.40 31.70 182.00 71.30
      Y 39.10 27.20 32.70 34.40 25.00 49.60 34.30 36.10
      Zr 151.00 375.00 219.00 145.00 91.00 133.00 199.00 133.00
      Nb 8.90 10.40 7.90 9.20 4.90 8.25 7.15 7.75
      Cs 4.35 5.22 3.46 4.76 3.77 6.16 2.76 3.05
      Ba 609.00 780.00 951.00 580.00 712.00 161.00 445.00 579.00
      La 45.70 26.20 49.00 32.40 20.20 34.50 28.90 35.10
      Ce 70.00 57.60 93.50 70.60 38.20 73.50 59.10 69.90
      Pr 10.45 6.13 9.88 7.29 4.30 8.37 6.65 7.93
      Nd 39.80 24.10 37.30 27.90 16.50 30.80 25.70 28.90
      Sm 8.52 5.13 6.93 5.62 3.37 6.69 5.37 5.86
      Eu 0.48 1.29 0.71 0.46 0.47 0.19 1.03 0.57
      Gd 6.92 4.41 5.78 5.17 3.26 7.43 5.63 5.90
      Tb 1.14 0.70 0.93 0.87 0.57 1.17 0.86 0.88
      Dy 6.61 4.26 5.38 5.06 3.58 7.62 5.38 5.46
      Ho 1.30 0.87 1.13 1.06 0.78 1.62 1.12 1.13
      Er 3.80 2.66 3.03 3.24 2.32 4.89 3.25 3.36
      Tm 0.54 0.42 0.50 0.49 0.39 0.75 0.49 0.53
      Yb 3.65 2.73 3.09 3.32 2.61 4.84 3.25 3.54
      Lu 0.54 0.47 0.48 0.52 0.39 0.73 0.50 0.55
      Hf 4.90 8.70 5.80 4.30 3.00 4.47 5.35 4.25
      Ta 0.60 0.40 0.30 0.50 0.20 0.85 0.60 0.85
      Th 15.05 7.43 9.50 9.23 12.10 20.20 9.15 16.00
      U 3.75 1.72 1.80 2.95 2.10 4.57 1.38 3.33
      REE 199.45 136.97 217.64 164.00 96.94 200.58 142.27 171.12
      LREE 441.16 293.11 466.20 336.44 200.78 418.43 292.63 359.03
      HREE 156.88 109.48 132.69 130.21 93.49 190.38 132.83 139.30
      LREE/HREE 2.81 2.68 3.51 2.58 2.15 2.20 2.20 2.58
      δEu 0.19 0.34 0.26 0.43 0.08 0.30 0.82 0.57
      (La/Yb)N 8.25 10.45 6.43 5.10 7.08 6.81 6.32 4.85
      (Gd/Yb)N 1.52 1.50 1.25 1.00 1.23 1.33 1.29 1.39
      Rb/Sr 2.48 1.06 2.21 2.71 6.45 1.97 0.46 0.40
      Sr/Y 1.58 3.29 1.93 2.38 0.64 1.98 7.15 5.31
      Nb/Ta 14.83 26.33 18.40 24.50 9.66 9.14 26.00 11.86
      Zr/Hf 30.82 37.76 33.72 30.33 29.67 31.26 43.10 37.28
      K/Rb 239.17 303.53 238.78 240.69 195.18 246.93 266.39 301.48
      Th/U 4.01 5.28 3.13 5.76 4.42 4.82 4.32 6.64
      Nd/Th 2.64 3.93 3.02 1.36 1.52 1.80 3.24 2.81
      Q 34.81 32.68 33.99 37.37 35.15 35.07 23.51 28.63
      An 3.69 5.65 4.72 2.84 3.45 4.59 10.47 13.83
      Ab 32.38 32.94 33.01 29.98 30.47 32.64 42.35 34.86
      Or 26.31 24.91 25.26 27.70 28.46 24.82 17.12 15.79
      C 0.40 0.26 0.21 0.81 0.34 0.39 0.21 0.48
      DI 93.50 90.53 92.26 95.05 94.08 92.53 82.98 79.28
      A/CNK 1.03 1.02 1.02 1.07 1.03 1.03 1.01 1.02
      AR 4.11 3.57 3.84 4.25 4.34 3.76 2.63 2.20
      A/MF 5.84 4.06 5.06 10.59 6.55 5.69 2.69 2.62
      C/MF 0.62 0.63 0.67 0.83 0.67 0.74 0.68 0.89
      TZr(℃) 716.60 786.57 742.53 720.60 679.05 706.81 723.64 696.62
      注:主量元素单位为%;稀土和微量元素单位为10-6.
      下载: 导出CSV

      表  3  兴凯地块南部花岗岩锆石Hf同位素分析结果

      Table  3.   Zircon Hf isotope analysis of granite in southern Xingkai block

      样品号 t(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ TDM1 TDM2
      八楞山岩体
      JX1304-01 203 0.073 795 0.001 128 0.002 615 0.000 035 0.282 907 0.000 025 4.77 8.88 0.90 512 674
      JX1304-02 203 0.062 531 0.000 784 0.002 285 0.000 028 0.282 846 0.000 020 2.63 6.79 0.72 596 809
      JX1304-03 203 0.064 845 0.000 257 0.002 306 0.000 010 0.282 875 0.000 016 3.63 7.78 0.58 555 745
      JX1304-04 203 0.070 502 0.000 525 0.002 518 0.000 015 0.282 853 0.000 021 2.87 7.00 0.73 590 795
      JX1304-05 203 0.087 007 0.000 671 0.003 054 0.000 021 0.282 808 0.000 034 1.29 5.34 1.21 666 901
      JX1304-06 203 0.053 818 0.000 623 0.001 945 0.000 021 0.282 884 0.000 019 3.96 8.16 0.67 536 721
      JX1304-07 203 0.070 193 0.000 521 0.002 513 0.000 021 0.282 862 0.000 020 3.18 7.31 0.69 577 775
      JX1304-08 203 0.058 328 0.000 262 0.002 093 0.000 008 0.282 870 0.000 018 3.45 7.63 0.65 559 754
      JX1304-09 203 0.084 262 0.001 181 0.002 965 0.000 042 0.282 842 0.000 027 2.47 6.54 0.96 614 824
      JX1304-10 203 0.087 070 0.000 964 0.003 029 0.000 030 0.282 892 0.000 026 4.25 8.31 0.91 540 711
      天岭桥岩体
      1322-01 205 0.061 001 0.001 168 0.001 839 0.000 027 0.282 841 0.000 020 2.44 6.70 0.71 596 816
      1322-02 205 0.042 468 0.000 360 0.001 266 0.000 009 0.282 913 0.000 019 4.99 9.32 0.66 484 648
      1322-03 205 0.050 346 0.001 287 0.001 519 0.000 037 0.282 846 0.000 019 2.63 6.93 0.66 584 801
      1322-04 205 0.030 169 0.000 122 0.001 072 0.000 005 0.282 773 0.000 017 0.03 4.39 0.60 681 963
      1322-05 205 0.041 283 0.000 250 0.001 272 0.000 010 0.282 866 0.000 018 3.32 7.65 0.62 552 755
      1322-06 205 0.055 616 0.000 225 0.001 965 0.000 011 0.282 798 0.000 018 0.91 5.15 0.65 661 915
      1322-07 205 0.028 963 0.000 114 0.000 894 0.000 004 0.282 910 0.000 018 4.89 9.27 0.63 484 651
      1322-08 205 0.029 777 0.000 501 0.000 876 0.000 014 0.282 831 0.000 016 2.09 6.47 0.55 595 830
      风月桥林场岩体
      1327-01 202 0.042 825 0.000 164 0.001 411 0.000 008 0.282 859 0.000 016 3.06 7.31 0.57 564 774
      1327-02 202 0.036 255 0.000 171 0.001 250 0.000 008 0.282 845 0.000 021 2.57 6.85 0.74 582 804
      1327-03 202 0.034 793 0.000 388 0.001 216 0.000 013 0.282 848 0.000 016 2.69 6.96 0.58 577 796
      1327-04 202 0.037 168 0.000 247 0.001 285 0.000 007 0.282 882 0.000 015 3.88 8.15 0.51 530 721
      1327-05 202 0.028 917 0.000 088 0.001 025 0.000 002 0.282 834 0.000 017 2.18 6.49 0.61 594 827
      1327-06 202 0.057 601 0.000 776 0.002 062 0.000 022 0.282 824 0.000 046 1.84 6.01 1.63 625 858
      1327-07 202 0.033 068 0.000 190 0.001 115 0.000 003 0.282 809 0.000 016 1.32 5.61 0.58 630 883
      1327-08 202 0.032 636 0.000 101 0.001 173 0.000 003 0.282 851 0.000 014 2.78 7.06 0.50 572 790
      注:TDM1为单阶段模式年龄,TDM2为两阶段模式平均年龄,单位均为Ma;fLu/Hf为分馏因子.
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192: 59-79. doi: 10.1016/S0009-2541(02)00195-X
      [2] Brown, G.C., Thorpe, R.S., Webb, P.C., 1984. The Geochemical Characteristics of Granitoids in Contrasting Arcs and Comments on Magma Sources. Journal of Geological Society of London, 141: 413-426. doi: 10.1144/gsjgs.141.3.0413
      [3] Deng, J.F., Xiao, Q.H., Su, S.G., et al., 2007. Igneous Petrotectonic Assemblages and Tectonic Settings: A Discussion. Geological Journal of China Universites, 13(3): 392-402 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703004.htm
      [4] Geology and Mineral Resources of Heilongjiang Province, 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing, 380-407 (in Chinese).
      [5] Hong, D.W., Guo, W.Q., Li, G.J., et al., 1987. Petrology of the Miarolitic Granite Belt in the Southeast Coast of Fujian Province and Their Petrogenesis. Science and Technology Press of Beijing, Beijing (in Chinese).
      [6] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. doi: 10.1093/petroj/38.3.371
      [7] Li, R., 2013. Age, Geochemistry and Petrogenesis of the Weihe Granite Batholith in the Northern Zhangguangcai Range (Dissertation). Jilin University, Changchun, 49-51 (in Chinese with English abstract).
      [8] Li, X.H., Li, W.X., Li, Z.X., 2007. On the Genetic Classification and Tectonic Implication of the Early Yanshan Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(9): 981-992 (in Chinese). doi: 10.1360/csb2007-52-9-981
      [9] Linnen, R.L., Keppler, H., 1997. Columbite Solubility in Granitic Melts: Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth's Crust. Contrib. Mineral. Petrol., 128: 213-227. doi: 10.1007/s004100050304
      [10] Linnen, R.L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochim. Cosmochim. Acta, 66(18): 3293-3301. doi: 10.1016/S0016-7037(02)00924-9
      [11] Liu, Y.J., Zhang, X.Z., Jin, W., et al., 2010. Late Paleozoic Tectonic Evolution in Northeast China. Geology in China, 37(4): 943-951 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004012.htm
      [12] Ren, J.S., Chen, T.Y., Niu, B.G., et al., 1990. Tectonic Evolution of the Continental Lithosphere and Metallogeny in Eastern China and Adjacent Areas. Science Press, Beijing, 22-28 (in Chinese).
      [13] Ren, J.S., Wang, Z.X., Chen, B.W., et al., 1999. The Tectonic of China from a Global View: A Guide to the Tectonic Map of China and Adjacent Regions. Geological Publishing House, Beijing, 4-32 (in Chinese).
      [14] Shao, J.A., 1991. The Crust Evolution in the Middle Part of the Northern Margin of the Sino-Korean Plate. Peking University Press, Beijing (in Chinese).
      [15] Shao, J.A., Li, Y.F., Tang, K.D., 2013. Restoration of the Orogenic Progresses of Zhangguangcai Range. Acta Petrologica Sinica, 29(9): 2959-2970 (in Chinese with English abstract). http://www.researchgate.net/publication/286973115_Restoration_of_the_Orogenic_Progresses_of_Zhangguangcai_Range
      [16] Shao, J.A., Tang, K.D., 1995. Terranes in Northeast China and Evolution of Northeast Asia Continental Margin. Seismology Press, Beijing, 46-47 (in Chinese).
      [17] Shao, J.A., Tang, K.D., Zhan, L.P., et al., 1995. Reconstruction of an Ancient Continental Margin and Its Implication: New Progress on the Study of Yanbian Region, Northeast China. Science in China (Ser. B), 25(5): 548-555 (in Chinese). http://ci.nii.ac.jp/naid/10006457132
      [18] Sun, D.Y., 2001. Petrogenesis and Geodynamic Significance of Mesozoic Granites in Zhangguangcai Ranges (Dissertation). Jilin University, Changchun, 97-98 (in Chinese with English abstract).
      [19] Sun, D.Y., Wu, F.Y., Zhang, Y.B., et al., 2004. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone—Evidence from the Dayushan Granitic Pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), 34(2): 174-181 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-jilin-university-earth-science-edition_thesis/0201247977852.html
      [20] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond., 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [21] Thiéblemont, D., Tegyey, M., 1994. Une Discrimination Géochimique Desroches Différenciées Témoin de la Diversité d'Origine et de Situation Tectonique des Magmas Calco-Alcalins. Comptes Rendusde l'Académiedes Sciences Paris, 319: 87-94.
      [22] Wolf, M.B., London, D., 1994. Apatite Dissolution into Peraluminous Haplogranitic Melts: An Experimental Study of Solubilities and Mechanism. Geochim. Cosmochim. Acta, 58: 4127-4145. doi: 10.1016/0016-7037(94)90269-0
      [23] Wu, F, Y., Li, X, H., Yang, J, H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). http://www.researchgate.net/publication/279707410_Discussion_on_the_petrogenesis_of_granites
      [24] Wu, F.Y., Jahn, B.M., Wilde, S.A., et al., 2003. Highly Fractionated Ⅰ-Type Granites in NE China (1): Geochronology and Petrogenesis. Lithos, 66: 241-273. doi: 10.1016/S0024-4937(03)00015-X
      [25] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003. Determination of U-Pb Age and Rare Earth Element Concentrations of Zircons from Cenozoic in Northeastern China by Laster Ablation ICP-MS. Chinese Science Bulletin, 48(14): 1511-1520 (in Chinese). doi: 10.1360/csb2003-48-14-1511
      [26] Zhang, K.J., 1995. North and South China Collision along the Eastern and Southern North China Margins. Tectonophysics, 270: 145-156. doi: 10.1016/S0040-1951(96)00208-9
      [27] Zhang, K.J., 2003. Granulite Xenoliths from Cenozoic Basalts in SE China Provide Geochemical Fingerprints to Distinguish Lower Crust Terrances from the North and South China Tectonic Blocks: Comment. Lithos, 73: 127-134.
      [28] Zhou, J.B., Zeng, W.S., Cao, J.L., et al., 2012. The Tectonic Framework and Evolution of the NE China: From ~500 Ma to ~180 Ma. Journal of Jilin University (Earth Science Edition), 42(5): 1298-1316, 1329 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-jilin-university-earth-science-edition_thesis/0201247969349.html
      [29] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009. Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Chayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China (Ser. D), 39(7): 833-848 (in Chinese). http://www.ingentaconnect.com/content/ssam/10069313/2009/00000052/00000009/art00001
      [30] 邓晋福, 肖庆辉, 苏尚国, 等, 2007. 火成岩组合与构造环境讨论. 高校地质学报, 13(3): 392-402. doi: 10.3969/j.issn.1006-7493.2007.03.009
      [31] 黑龙江省矿产局, 1993. 黑龙江区域地质志. 北京: 地质出版社, 380-407.
      [32] 洪大卫, 郭文岐, 李戈晶, 等, 1987. 福建沿海晶洞花岗岩带的岩石学和成因演化. 北京: 北京科学技术出版社.
      [33] 李蓉, 2013. 张广才岭北部苇河花岗岩基的时代、地球化学特征及岩石成因(硕士学位论文). 长春: 吉林大学, 49-51.
      [34] 李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-992. doi: 10.3321/j.issn:0023-074X.2007.09.001
      [35] 刘永江, 张兴洲, 金巍, 等, 2010. 东北地区晚古生代区域构造演化. 中国地质, 37(4): 943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010
      [36] 任纪舜, 陈廷愚, 牛宝贵, 等, 1990. 中国东部及邻区大陆岩石圈的构造演化与成矿. 北京: 科学出版社, 22-28.
      [37] 任纪舜, 王作勋, 陈炳蔚, 等, 1999. 从全球看中国大地构造中国及临区大地构造图简要说明. 北京: 北京地质版社, 4-32.
      [38] 邵济安, 1991. 中朝板块北缘中段地壳演化. 北京: 北京大学出版社.
      [39] 邵济安, 李永飞, 唐克东, 2013. 张广才岭造山过程的重构及其大地构造意义. 岩石学报, 29(9): 2959-2970. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309001.htm
      [40] 邵济安, 唐克东, 1995. 中国东北地体与东北亚大陆边缘演化. 北京: 地震出版社, 46-47.
      [41] 邵济安, 唐克东, 詹立培, 等, 1995. 一个古大陆边缘的再造及其大地构造意义——延边地质研究新进展. 中国科学(B辑), 25(5): 548-555. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199505015.htm
      [42] 孙德有, 2001. 张广才岭中生代花岗岩成因及其地球动力学意义(博士学位论文). 长春: 吉林大学, 97-98.
      [43] 孙德有, 吴福元, 张艳斌, 等, 2004. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据. 吉林大学学报(地球科学版), 34(2): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200402003.htm
      [44] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
      [45] 袁洪林, 吴福元, 高山, 等, 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
      [46] 周建波, 曾维顺, 曹嘉麟, 等, 2012. 中国东北地区的构造格局与演化: 从500 Ma到180 Ma. 吉林大学学报(地球科学版), 42(5): 1298-1316, 1329. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205005.htm
      [47] 朱弟成, 莫宣学, 王立全, 等, 2009. 西藏冈底斯东部察隅高分异Ⅰ型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学(D辑), 39(7): 833-848. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907001.htm
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  3475
    • HTML全文浏览量:  179
    • PDF下载量:  442
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-12-24
    • 刊出日期:  2015-06-15

    目录

      /

      返回文章
      返回