Quantitative Estimation of Surface Denudation in Longmen Shan during Late Cenozoic
-
摘要: 龙门山是青藏高原周边山脉中地形梯度变化最大的山脉.利用数字高程模型(digital elevation models, DEM),采用三维残余面法恢复龙门山晚新生代古残余面DEM,并与现代地形面做差值运算,得到研究区域的剥蚀量地形,进而定量估算青衣江、岷江、沱江和涪江主要水系流域晚新生代的地表剥蚀量.结果表明:龙门山晚新生代地表剥蚀总量为80 500~92 800 km3;岷江流域对龙门山地区剥蚀量贡献率约33.9%~37.1%,其次为涪江(33.6%~38.4%)、青衣江(24.1%~31.9%),沱江流域贡献率为0.4%~0.6%;类似2008年“5·12”汶川地震的次生灾害引发的地表快速剥蚀,是青藏高原东缘龙门山造山带晚新生代地表剥蚀的主要原因.Abstract: Longmen Shan located at the eastern margin of Tibetan Plateau represents the steepest gradient of the Tibetan Plateau edges. To assess the large-scale denudation volume in Longmen Shan, Late Cenozoic, surface denudation is quantitatively calculated along several large drainage basins such as Qingyijiang, Minjiang, Tuojiang, and Fujiang rivers by using digital elevation models (DEM) data, and residual surface method with paleo-residual surface DEM minus modern surface topography in this study. It is found that the Late Cenozoic denudation volume of upper reaches in Longmen Shan drainage basin is between 80 500 and 92 800 km3. Minjiang River has the largest contribution ratio to denudation in Longmen Shan (33.9%-37.1%), followed by Fujiang (33.6%-38.4%) and Qingyijiang Rivers (24.1%-31.9%), and Tuojiang River has minimum contribution (0.4%-0.6%). A rapid erosional removal from the Longmen Shan by repeated great seismic events like the Wenchuan earthquake on May 12th, 2008, may be a main reason of the surface erosion in Late Cenozoic Longmen Shan along the eastern margin of Tibetan Plateau.
-
Key words:
- Longmen Shan /
- Late Cenozoic /
- denudation /
- quantitative analysis /
- residual surface /
- tectonics
-
图 4 剥蚀量分析示意(据张会平,2006修改)
Fig. 4. Schematic of denudation analysis
表 1 各种插值方法预测图误差对比
Table 1. Errors comparison by various interpolation methods prediction figure
编号 插值方法 平均误差 均方根预测误差 1 反距离权插值法(IDW) -0.000 4 13.69 2 全局多项式插值(GPI) -0.001 6 238.90 3 局部多项式插值(LPI) 0.128 4 21.61 4 径向基函数插值法(RBF) -0.146 4 11.81 5 协同克里格插值(CoKring) -0.100 8 9.92 6 自然邻点法(NNI) 无预测值 无预测值 表 2 残余面法估算研究区剥蚀量
Table 2. Denudation estimated by residual surface method
研究区 反距离权插值法 协同克里格插值法 自然邻点插值法 剥蚀量(km3) 比例(%) 剥蚀量(km3) 比例(%) 剥蚀量(km3) 比例(%) 青衣江 29 595.43 0.319 19 925.21 0.246 19 402.11 0.241 岷江 31 502.84 0.339 29 595.43 0.366 29 876.11 0.371 沱江 525.75 0.006 301.60 0.004 293.41 0.004 涪江 31 186.54 0.336 31 118.74 0.384 30 933.09 0.384 总量 92 810.56 80 940.99 80 504.72 表 3 四川盆地第四纪沉积物分布面积统计
Table 3. Distribution area statistics of Quaternary sediments in Sichuan basin
雅安砾岩 丹思砾岩 名邛砾岩 大邑砾岩 分布面积(km2) 2 881.85 870.48 942.48 153.36 总面积(km2) 2 881.85 1 812.96 153.36 来源 岷江 青衣江 青衣江和岷江 -
[1] Burbank, D.W., Blythe, A.E., Putkonen, J., et al., 2003. Decoupling of Erosion and Precipitation in the Himalayas. Nature, 426(6967): 652-655. doi: 10.1038/nature02187 [2] Burchfiel, B.C., Chen, Z.L., Liu, Y.P., 1995. Tectonics of the Longmen Shan and Adjacent Regions, Central China. International Geology Review, 37(8): 661-735. doi: 10.1080/00206819509465424 [3] Cui, Z.J., Gao, Q.Z., Liu, G.N., et al., 1996. The Inital Elevation of Palaeokarst and Planation Surfaces on Tibet Plateau. Science in China (Series D), 26(4): 378-386 (in Chinese). [4] Cui, Z.J., Li, D.W., Wu, Y.Q., et al., 1998. Comment on the Planation Surface. Chinese Science Bulletin, 43(17): 1794-1804 (in Chinese). doi: 10.1360/csb1998-43-17-1794 [5] Cui, Z.Q., Liu, D.Z., Meng, Q.M., 2009. The Origin of the Pleistocene Gravel in Western Sichuan Depression. Geology in China, 36(5): 1065-1078 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200905013.htm [6] Dadson, S.J., Hovius, N., Chen, H., et al., 2003. Links between Erosion, Runoff Variability and Seismicity in the Taiwan Orogen. Nature, 426(6967): 648-651. doi: 10.1038/nature02150 [7] Dai, F.C., Xu, C., Yao, X., et al., 2011. Spatial Distribution of Landslides Triggered by the 2008 Ms8.0 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 883-895. doi: 10.1016/j.jseaes.2010.04.010 [8] Densmore, A.L., Li, Y., Ellis, M.A., et al., 2005. Active Tectonics and Erosional Unloading at the Eastern Margin of the Tibetan Plateau. Journal of Mountain Science, 2(2): 146-154. doi: 10.1007/BF02918330 [9] Feng, J.L., Cui, Z.J., Zhu, L.P., 2005. Review on the Planation Surface. Journal of Mountain Science, 23(1): 1-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA200501001.htm [10] Fu, B.H., Shi, P.L., Guo, H.D., et al., 2011. Surface Deformation Related to the 2008 Wenchuan Earthquake, and Mountain Building of the Longmen Shan, Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 40: 805-824. doi: 10.1016/j.jseaes.2010.11.011 [11] Fu, B.H., Shi, P.L., Zhang, Z.W., 2008. Spatial Characteristics of the Surface Rupture Produced by the Ms8.0 Wenchuan Earthquake Using High-Resolution Remote Sensing Imagery. Acta Geologica Sinica, 82(12): 1679-1687 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=28269426 [12] Fu, B.H., Wang, P., Kong, P., et al., 2009. Ms8.0 Wenchuan Earthquake of May 12th 2008—Earthquake Geological Disasters Atlas. Seismological Press, Beijing (in Chinese). [13] Goudie, A., 1985. The Encyclopedia Dictionary of Physical Geography (Blackwell Reference). Blackwell Reference, London, 528. [14] Goudie, A., 2003. The Encyclopedia of Geomorphology. Routledge, London, 818-820. [15] Granger, D.E., Kirchner, J.W., Finkel, R., 1996. Spatially Averaged Long-Term Erosion Rates Measured from In Situ-Produced Cosmogenic Nuclides in Alluvial Sediments. The Journal of Geology, 104: 249-257. doi: 10.1002/esp.1493 [16] Jia, Y.Y., Fu, B.H., Wang, Y., et al., 2010. Late Cenozoic Tectonic-Geomorphic Growth and Drainage Response in the Longmen Shan Fault Zone, East Margin of Tibet. Quaternary Sciences, 30(4): 825-836 (in Chinese with English abstract). http://www.researchgate.net/publication/285099537_Late_Cenozoic_tectono-geomorphic_growth_and_drainage_response_in_the_Longmen_Shan_fault_zone_east_margin_of_Tibet [17] Lamb, S., Davis, D., 2003. Cenozoic Climate Change as a Possible Cause for the Rise of the Andes. Nature, 425(6960): 792-797. doi: 10.1038/nature02049 [18] Li, H.B., Wang, Z.X., Fu, X.F., et al., 2008. The Surface Rupture Zone Distribution of the Wenchuan Earthquake (Ms8.0) Happened on May 12th, 2008. Geology in China, 35(5): 803-813 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=28269426 [19] Li, Y.K., Harbor, J., Liu, G.N., 2005. Applications and Limitations of In-Situ Cosmogenic Nuclides in Earth Sciences. Research of Soil and Water Conservation, 12(4): 146-152 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBY200504042.htm [20] Li, Y., Cao, S.Y., Zhou, R.J., et al., 2005a. Late Cenozoic Minjiang Incision Rate and Its Constraint on the Uplift of the Eastern Margin of the Tibetan Plateau. Acta Geologica Sinica, 79(1): 28-37 (in Chinese with English abstract). http://www.researchgate.net/publication/285785020_Late_Cenozoic_Minjiang_incision_rate_and_its_constraint_on_the_uplift_of_the_eastern_margin_of_the_Tibetan_Plateau [21] Li, Y., Densmore, A.L., Zhou, R.J., et al., 2005b. Late Cenozoic Erosional Thickness and Flexural Deflection along the Eastern Margin of Tibetan Plateau. Acta Geologica Sinica, 79(5): 608-615 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200505005.htm [22] Li, Y., Zhou, R.J., Densmore, A.L., et al., 2006. Continental Dynamics and Geological Responses of the Eastern Margin of Qinghai-Tibet Plateau. Geological Publishing House, Beijing, 152 (in Chinese). [23] Liu, F., Fu, B.H., Yang, S.H., 2013. Quantitative Estimation of the Evacuation Time of Landslide Mass and Sediment Induced by the Great Events Like 2008 Wenchuan Earthquake along the Minjiang River, Longmen Shan Orogenic Belt. Chinese Journal of Geophysics, 56(5): 1517-1525 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201305011.htm [24] Liu, S.G., Luo, Z.L., Zhao, X.K., et al., 2003. Coupling Relationships of Sedimentary Basin-Orogenic Belt Systems and Their Dynamic Models in West China—A Case Study of the Longmenshan Orogenic Belt-West Sichuan Foreland Basin System. Acta Geologica Sinica, 77(2): 177-186 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE200302007.htm [25] Liu-Zeng, J., Wen, L., Oskin, M., et al., 2011. Focused Modern Denudation of the Longmen Shan Margin, Eastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 12(11): Q11007. doi: 10.1029/2011GC003652 [26] Liu-Zeng, J., Zhang, Z., Wen, L., et al., 2009. Co-Seismic Ruptures of the May 12th 2008, Ms8.0 Wenchuan Earthquake, Sichuan: East-West Crustal Shortening on Oblique, Parallel Thrusts along the Eastern Edge of Tibet. Earth and Planetary Science Letters, 286(3-4): 355-370. doi: 10.1016/j.epsl.2009.07.017 [27] McMillan, M.E., 2003. Basin Fill, Erosion Surface and Tilted Markers: Evidence of Late Cenozoic Tectonic Uplift of the Rocky Mountain Orogenic Plateau (Dissertation). Wyoming University, Wyoming, 118. [28] Molnar, P., 2003. Geomorphology: Nature, Nurture and Landscape. Nature, 426: 612-614. doi: 10.1038/426612a [29] Ouimet, W.B., 2010. Landslides Associated with the May 12, 2008 Wenchuan Earthquake: Implications for the Erosion and Tectonic Evolution of the Longmen Shan. Tectonophysics, 491: 244-252. doi: 10.1016/j.tecto.2009.09.012 [30] Pan, B.T., Gao, H.S., Li, B.Y., et al., 2004. Step-Like Landforms and Uplift of the Qinghai-Xizang Plateau. Quaternary Sciences, 24(1): 50-57 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200401005.htm [31] Parker, R.N., Densmore, A.L., Rosser, N.J., et al., 2011. Mass Wasting Triggered by 2008 Wenchuan Earthquake is Greater than Orogenic Growth. Nature Geoscience, 4(4): 449-452. doi: 10.1038/ngeo1154 [32] Qian, H., Tang, R.C., 1997. On the Formation and Evolution of the Chengdu Plain. Sichuan Earthquake, 3: 1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCHZ199703000.htm [33] Raymo, M.E., Ruddiman, W.F., 1992. Tectonic Forcing of Late Cenozoic Climate. Nature, 359: 117-122. doi: 10.1038/359117a0 [34] Reiners, P.W., Ehlers, T.A., Mitchell, S.G., et al., 2003. Coupled Spatial Variation in Precipitation and Long-Term Erosion Rate across the Washington Cascades. Nature, 426(6967): 645-647. doi: 10.1038/nature02111 [35] Small, E., Anderson, R., 1998. Pleistocene Relief Production in Laramide Mountain Ranges, Western United States. Geology, 26(2): 123-126. doi: 10.1130/0091-7613 [36] Small, R.J., 1978. The Study of Landforms. In: Soerianegara, I., Lemmens, R.H.M.J., eds., Plant Resources of South-East Asia No. 5(1). Timber Trees: Major Commercial Timbers. Bogor, Indonesia (2ed). Cambridge University Press, London. [37] Tang, A.G., Yang, X., 2000. ArcGIS Spatial Analysis Experiments Tutorial. Science Press, Beijing, 480 (in Chinese). [38] Tang, H.M., Jia, H.B., Hu, X.L., et al., 2010. Characteristics of Landslides Induced by the Great Wenchuan Earthquake. Journal of Earth Science, 21(1): 104-113. doi: 10.1007/s12583-010-0008-1 [39] Tang, W.Q., Zhang, Q.Z., Liu, Y.P., et al., 2012. Active Faulting along the Longmenshan Fault Zone after the 8.0 Magnitude Wenchuan Earthquake in Sichuan. Sedimentary Geology and Tethyan Geology, 32(4): 106-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201204016.htm [40] Tang, X., Tao, X.F., 2009. Analysis on Characteristics of Qingyi River Quaternary Terrace in Ya'an Area. Acta Sedimentologica Sinica, 27(1): 137-141 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200901019.htm [41] Twidale, C.R., 1968. Inselberg, Pediment. In: Fairbridge, R.W., ed., The Encyclopedia of Geomorphology. Dowden, Hutchinson & Ross Inc., Pennsylvania, 556-559, 817-818. [42] Wang, H., Li, H.B., Si, J.L., et al., 2013. The Relationship between the Internal Structure of the Wenchuan Earthquake Fault Zone and the Uplift of the Longmenshan. Acta Petrologica Sinica, 29(6): 2048-2060 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201306015.htm [43] Wang, Y., 2011. Late Cenozoic Surface Denudation and Isostatic Rebound in Longmen Shan, East Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [44] Wang, Y., Liu, S.F., 2013. Quantitative Research on Longmen Shan Uplift Caused by Late Cenozoic Isostatic Rebound. Geoscience, 27(2): 239-247 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201302001.htm [45] Wang, Y., Zhang, T., Liu, S.F., et al., 2010. A New Model for Optimizing Relief Window Size. IEEE ICCSM, 12: 208-212. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1668463 [46] Wei, F.Q., Chernomorets, S., Aristov, K., et al., 2010. A Seismically Triggered Landslide in the Niujuan Valley near the Epicenter of the 2008 Wenchuan Earthquake. Journal of Earth Science, 21(6): 901-909. doi: 10.1007/s12583-010-0143-8 [47] Xu, Q., Dong, X.J., 2011. Genetic Types of Large-Scale Landslides Induced by Wenchuan Earthquake. Earth Science—Journal of China University of Geosciences, 36(6): 1134-1142 (in Chinese with English abstract). doi: 10.1007%2F978-3-642-32238-9_54 [48] Xu, X.W., Wen, X.Z., Ye, J.Q., et al., 2008. The Ms8.0 Wenchuan Earthquake Surface Ruptures and Its Seismogenic Structure. Seismology and Geology, 30(3): 597-629 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200803003.htm [49] Xu, Z.Q., Li, H.Q., Hou, L.W., et al., 2007. Uplift of the Longmen-Jinping Orogenic Belt along the Eastern Margin of the Qinghai-Tibet Plateau: Large-Scale Detachment Faulting and Extrusion Mechanism. Geological Bulletin of China, 26(10): 1262-1276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200710007.htm [50] Yuan, J.J., Tao, X.F., 2008. The Features of Gravel Bed and Drainage Evolution in the Qingyi River Valley in the Mingshan-Danling Region, Sichuan. Acta Geologica Sichuan, 28(1): 6-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB200801002.htm [51] Zhang, H.P., 2006. Study on Late Cenozoic Geomorphic Processes of Typical Regions along the Eastern and Northeastern Tibetan Margins (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [52] Zhang, S.M., Ding, R., Mao, C.W., et al., 2010. Morphological Appearance of the Longmenshan Tectonic Uplift on the Eastern Margin of Tibetan Plateau. Quaternary Sciences, 30(4): 791-802 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ201004016.htm [53] Zhao, G.H., Li, Y., Yan, L., et al., 2014. Tectonic Geomorphology and Surface Erosion Processes in the Longmenshan Area after the 2008 Wenchuan Ms8.0 Earthquake—Take Haizi River of Jiangjian for Example. Earthquake Research in Sichuan, (1): 15-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SCHZ201401005.htm [54] 崔之久, 高全洲, 刘耕年, 等, 1996. 夷平面、古岩溶与青藏高原隆起. 中国科学(D辑), 26(4): 378-386. [55] 崔之久, 李德文, 伍永秋, 等, 1998. 关于夷平面. 科学通报, 43(17): 1794-1804. doi: 10.3321/j.issn:0023-074X.1998.17.002 [56] 崔志强, 刘登忠, 孟庆敏, 2009. 川西凹陷地区更新统砾石层沉积成因探讨. 中国地质, 36(5): 1065-1078. doi: 10.3969/j.issn.1000-3657.2009.05.011 [57] 冯金良, 崔之久, 朱立平, 2005. 夷平面研究评述. 山地学报, 23(1): 1-13. doi: 10.3969/j.issn.1008-2786.2005.01.001 [58] 付碧宏, 时丕龙, 张之武, 2008. 四川汶川Ms8.0大地震地表破裂带的遥感影像解析. 地质学报, 82(12): 1679-1687. doi: 10.3321/j.issn:0001-5717.2008.12.005 [59] 付碧宏, 王萍, 孔屏, 等, 2009. 中国汶川"5·12" 8.0级大地震-地震地质灾害图集. 北京: 地震出版社. [60] 贾营营, 付碧宏, 王岩, 等, 2010. 青藏高原东缘龙门山断裂带晚新生代构造地貌生长及水系响应. 第四纪研究, 30(4): 825-836. doi: 10.3969/j.issn.1001-7410.2010.04.17 [61] 李海兵, 王宗秀, 付小方, 等, 2008.2008年5月12日汶川地震(Ms8.0)地表破裂带的分布特征. 中国地质, 35(5): 803-813. doi: 10.3969/j.issn.1000-3657.2008.05.002 [62] 李英奎, Harbor, J., 刘耕年, 2005. 宇宙核素地学研究的应用现状与存在的问题. 水土保持研究, 12(4): 146-152. doi: 10.3969/j.issn.1005-3409.2005.04.042 [63] 李勇, 曹叔尤, 周荣军, 等, 2005a. 晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束. 地质学报, 79(1): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501003.htm [64] 李勇, Densmore, A.L., 周荣军, 等, 2005b. 青藏高原东缘龙门山晚新生代剥蚀厚度与弹性挠曲模拟. 地质学报, 79(5): 608-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200505005.htm [65] 李勇, 周荣军, Densmore, A.L., 等, 2006. 青藏高原东缘大陆动力学过程与地质响应. 北京: 地质出版社, 152. [66] 刘锋, 付碧宏, 杨顺虎, 2013. 龙门山地区类似2008年汶川大地震滑坡物质河流卸载时间的定量估算. 地球物理学报, 56(5): 1517-1525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305011.htm [67] 刘树根, 罗志立, 赵锡奎, 等, 2003. 中国西部盆山系统的耦合关系及其动力学模式——以龙门山造山带-川西前陆盆地系统为例. 地质学报, 77(2): 791-802. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302007.htm [68] 潘保田, 高红山, 李炳元, 等, 2004. 青藏高原层状地貌与高原隆升. 第四纪研究, 24(1): 50-57. doi: 10.3321/j.issn:1001-7410.2004.01.006 [69] 钱洪, 唐荣昌, 1997. 成都平原的形成与演化. 四川地震, (3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ199703000.htm [70] 汤安国, 杨昕, 2000. ArcGIS地理信息系统空间分析实验教程. 北京: 科学出版社, 480. [71] 唐文清, 张清志, 刘宇平, 等, 2012. 汶川地震后龙门山断裂带活动特征. 沉积与特提斯地质, 32(4): 106-110. doi: 10.3969/j.issn.1009-3850.2012.04.016 [72] 唐熊, 陶晓风, 2009. 雅安地区青衣江流域第四纪阶地特征分析. 沉积学报, 27(1): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200901019.htm [73] 王焕, 李海兵, 司家亮, 等, 2013. 汶川地震断裂带结构特征与龙门山隆升的关系. 岩石学报, 29(6): 2048-2060. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306015.htm [74] 王岩, 2011. 龙门山晚新生代地表剥蚀与均衡抬升(博士学位论文). 北京: 中国地质大学. [75] 王岩, 刘少峰, 2013. 龙门山晚新生代均衡反弹隆升的定量研究. 现代地质, 27(2): 239-247. doi: 10.3969/j.issn.1000-8527.2013.02.001 [76] 许强, 董秀军, 2011. 汶川地震大型滑坡成因模式. 地球科学——中国地质大学学报, 36(6): 1134-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106019.htm [77] 徐锡伟, 闻学泽, 叶建青, 等, 2008. 汶川Ms8.0地震地表破裂带及其发震构造. 地震地质, 30(3): 597-629. doi: 10.3969/j.issn.0253-4967.2008.03.003 [78] 许志琴, 李化启, 侯立炜, 等, 2007. 青藏高原东缘龙门山锦屏山造山带的崛起——大型拆离断层和挤出机制. 地质通报, 26(10): 1262-1276. doi: 10.3969/j.issn.1671-2552.2007.10.005 [79] 袁俊杰, 陶晓风, 2008. 四川名山-丹棱地区青衣江流域的砾石层特征及水系演化. 四川地质学报, 28(1): 6-12. doi: 10.3969/j.issn.1006-0995.2008.01.002 [80] 张会平, 2006. 青藏高原东缘-东北缘典型地区晚新生代地貌过程研究(博士学位论文). 北京: 中国地质大学. [81] 张世民, 丁锐, 毛昌伟, 等, 2010. 青藏高原东缘龙门山山系构造隆起的地貌表现. 第四纪研究, 30(4): 791-802. doi: 10.3969/j.issn.1001-7410.2010.04.14 [82] 赵国华, 李勇, 闫亮, 等, 2014. 汶川Ms8.0级地震后龙门山构造地貌及地表侵蚀过程研究——以湔江海子段河为例. 四川地震, (1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ201401005.htm