Desorption Characteristics of Chlorobenzene from Clay
-
摘要: 为探索低浓度乙醇溶液中氯苯(Chlorobenzene,简称CB)在土壤中的迁移行为,以武汉市某化工厂受CB污染土壤为研究对象,设计正交试验,开展了淋洗条件筛选、最佳条件的验证和解吸动力学研究3组实验.优化出的最佳淋洗条件为常温、液土比(mL/g)为25∶1、淋洗液中乙醇体积浓度为10%、淋洗时间为2 h;在最优淋洗条件下,CB的提取率为90%;且CB解吸规律符合Freundlich吸附模型.以低浓度乙醇为淋洗剂修复受CB污染土壤,不仅可实现污染土壤修复的目标,同时还能够保留土壤功能,避免造成二次污染.Abstract: The chlorobenzene (CB) desorption characteristics on clay matrix at room temperature condition were investigated to examine the CB's migration under a low concentration of ethanol. To find out if the CB polluted the soil (clay) of the Chemical Factory at Wuhan, Hubei Province, China, three series of experiments were performed in this study. The first is the best leaching filtering condition. The second is the verification of the result of the best leaching condition and the third is testing the desorption kinetics of CB on clay. The results show that the solution to soil ratio (mL/g) was 25∶1 and ethanol concentration of 10% had the best leaching condition at 2 h at the room temperature. Moreover, the extraction rate of the chlorobenzene in soil was 90% under the best leaching condition. It was found that all desorption isotherm data of CB in clay could be best described with Freundlich equations. Using a low concentration of ethanol to restore the CB polluted clay is practicable. It can prevent secondary pollution while retaining the soil function as well.
-
Key words:
- chlorobenzene /
- clay /
- ethanol /
- leaching /
- desorption kinetics /
- pollution detection
-
表 1 土壤样品主要理化性质参数
Table 1. Physiochemical properties of soil
序号 项目 结果 1 粘粒(%) 34.0 2 粉粒(%) 58.0 3 砂粒(%) 8.0 4 样品性质 粉砂质粘土 5 pH 7.3 6 有机质(%) 1.5 7 含水率(%) 22.0 8 CB含量(mg·kg-1) 84.9±5.5 9 渗透系数(cm·s-1) 3.7×10-5 注:1.颗粒组成由全白动激光粒度分析仪(LS230)测得各土壤各个粒径的分布百分比,根据国际制标准划分(黄昌勇,2000);2.土壤有机质测定参照ISO 10694-1995测定;3.土壤含水率参照ISO 11461-2001测定方法规范测定. 表 2 正交设计
Table 2. Orthogonal array
序号 时间(h) 浓度(%) 液土比(mL/g) 温度(℃) 序号 时间(h) 浓度(%) 液土比(mL/g) 温度(℃) 1 4 4 20∶1 25 14 8 6 5∶1 25 2 10 2 10∶1 25 15 2 6 20∶1 40 3 8 2 15∶1 30 16 2 2 5∶1 20 4 2 4 25∶1 30 17 6 4 15∶1 20 5 6 2 20∶1 35 18 10 10 15∶1 40 6 4 6 15∶1 35 19 2 8 15∶1 25 7 8 4 10∶1 40 20 6 10 25∶1 25 8 10 4 5∶1 35 21 4 10 5∶1 30 9 10 8 20∶1 30 22 8 10 20∶1 20 10 8 8 25∶1 35 23 10 6 25∶1 20 11 6 8 5∶1 40 24 2 10 10∶1 35 12 4 8 10∶1 20 25 6 6 10∶1 30 13 4 2 25∶1 40 表 3 CB正交设计实验结果
Table 3. Orthogonal experiment results of CB
序号 提取率(%) 加标回收率(%) 残留率(%) 加标回收率(%) 序号 提取率(%) 加标回收率(%) 残留率(%) 加标回收率(%) 1 50.0 69.37 44.0 71.50 14 3.3 67.54 67.0 68.23 2 <0.6 70.24 91.0 69.24 15 60.0 71.34 8.3 69.48 3 4.1 71.43 83.0 72.52 16 5.4 74.43 71.0 74.21 4 82.0 72.85 7.2 73.45 17 35.0 73.17 34.0 68.36 5 33.0 75.19 54.0 72.80 18 34.0 67.10 43.0 72.10 6 39.0 71.33 50.0 68.37 19 52.0 74.56 17.0 72.83 7 <0.6 71.64 82.0 64.62 20 87.0 69.12 5.4 68.33 8 <0.6 69.87 82.0 67.14 21 20.0 71.66 56.0 68.15 9 48.0 73.22 33.0 73.60 22 64.0 72.57 12.0 71.37 10 74.0 70.09 <0.6 68.17 23 62.0 67.26 16.0 73.77 11 2.1 67.87 81.0 71.83 24 37.0 71.83 26.0 71.83 12 38.0 69.61 37.0 67.27 25 4.2 73.56 57.0 71.98 13 66.0 72.43 7.2 73.30 表 4 输入/移去的变量
Table 4. Input/output variable
模型 输入的变量 移去的变量 方法 1 液土比 - 逐步筛选法(标准:F-to-enter的概率≤0.050,F-to-remove的概率≥0.100). 2 浓度 - 逐步筛选法(标准:F-to-enter的概率≤0.050,F-to-remove的概率≥0.100). 3 时间 - 逐步筛选法(标准:F-to-enter的概率≤0.050,F-to-remove的概率≥0.100). 表 5 模型汇总
Table 5. Model summary
模型 R R2 修正R2 标准估计的误差 Durbin-Watson 1 0.88 0.77 0.76 14 2.3 2 0.94 0.88 0.86 10 2.3 3 0.97 0.94 0.93 7 2.3 表 6 方差分析
Table 6. Analysis of variance
模型 项目 平方和 df 均方 F Sig. 回归 14 785.12 1 14 785.121 78.223 0.000 1 残差 4 347.30 23 189.013 - - 总计 19 132.42 24 - - - 回归 16 742.00 2 8 370.999 77.042 0.000 2 残差 2 390.42 22 108.656 - - 总计 19 132.42 24 - - - 回归 18 003.02 3 6 001.007 111.583 0.000 3 残差 1 129.40 21 53.781 - - 总计 19 132.42 24 - - - 表 7 回归系数
Table 7. Regression coefficient
模型 变量 非标准化系数 标准系数 t Sig. B的95.0% 置信区间 B 标准误差 下限 上限 1 (常量) -15.708 6.448 - -2.436 0.023 -29.048 -2.368 液土比 3.439 0.389 0.879 8.844 0.000 2.635 4.244 (常量) -34.476 6.593 - -5.230 0.000 -48.148 -20.804 2 液土比 3.439 0.295 0.879 11.665 0.000 2.828 4.051 浓度 3.128 0.737 0.320 4.244 0.000 1.599 4.657 3 (常量) -19.410 5.585 - -3.475 0.002 -31.025 -7.795 液土比 3.439 0.207 0.879 16.581 0.000 3.008 3.871 浓度 3.128 0.519 0.320 6.032 0.000 2.050 4.206 时间 -2.511 0.519 0.257 -4.842 0.000 -3.589 -1.433 -
[1] Boyd, S.A., Lee, J.F., Mortland, M.M., 1988. Attenuating Organic Contaminant Mobility by Soil Modification. Nature, 333(6171): 345-347. doi: 10.1038/333345a0 [2] Chen, D.Y., Huang, W.L., 2003. Isothermal Sorption of 1, 3, 5-Trichlorbenzene and O-Xylene in Soil Organic Matters. China Environmental Science, 23(4): 371-375(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGHJ200304008.htm [3] Dai, J., 2011. The Identification of Anoxybacillus flavithermus subsp. yunnanensis and Characterize the Organic Solvent Tolerance (Dissertation). Anhui University, Hefei (in Chinese with English abstract). [4] Deng, Z.W., Yu, P., Chen, L., 2009. Application of SPSS Software in Orthogonal Design and Result Analysis. Computer Study, (5): 15-17(in Chinese with English abstract). [5] Edelstein, W.A., Iben, I.E.T., Mueller, O.M., et al., 1994. Radiofrequency Ground Heating for Soil Remediation: Science and Engineering. Environmental Progress, 13(4): 247-252. doi: 10.1002/ep.670130413 [6] Gao, H.J., Jiang, X., Chang, J., et al., 2007a. Time-Dependent Desorption Characteristics of Hexachlorobenzene(HCB) from Red Soil and Huangni Soil. Journal of Agro-Environment Science, 26(2): 588-591(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NHBH200702034.htm [7] Gao, H.J., Jiang, X., Wei, J.L., et al., 2007b. Sorption-Desorption Characteristic of HCB on Red Soil and Huangni Soil in Different Concentrations. Environmental Chemistry, 26(2): 130-134 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJHX200702004.htm [8] Gibson, B.R., Lawrence, S.J., Leclaire, J, P.R., et al., 2007. Yeast Responses to Stresses Associated with Industrial Brewery Handling. FEMS Microbiology Reviews, 31(5): 535-569. doi: 10.1111/j.1574-6976.2007.00076.x [9] Gordon, C.C., Yang, Liu, C.Y., 2001. Remediation of TCE Contaminated Soils by In Situ EK-Fenton Process. Journal of Hazardous Materials, 85(3): 317-331. doi: 10.1016/S0304-3894(01)00288-6 [10] Guerin, T.F., 1999. Bioremediation of Phenols and Polycyclic Aromatic Hydrocarbons in Creosote Contaminated Soil Using Ex-Situ Landtreatment. Journal of Hazardous Materials, 65(3): 305-315. doi: 10.1016/S0304-3894(99)00002-3 [11] Guo, G.L., Wang, X., Guan, L., et al., 2009. Site-Specific Spatial Distribution of VOC/SVOC and Determination of the Remediation Boundary. Acta Scientiae Circumstantiae, 29(12): 2597-2605(in Chinese with English abstract). http://www.oalib.com/paper/1592239 [12] Ho, S.V., Sheridan, P.W., Athmer, C, J., et al., 1995. Integrated In Situ Soil Remediation Technology: The Lasagna Process. Environ. Sci. Technol. , 29(10): 2528-2534. doi: 10.1021/es00010a011 [13] Hou, S.Y., 2008. Mechanism of Ethanol Tolerance Improvement of Free Yeast Cells in Wood-Chips-Packing System(Dissertation). Dalian University of Technology, Dalian (in Chinese with English abstract). [14] Hu, X., Hu, Y.M., Fan, Y.B., et al., 2000. Fate and Behavior of Chlorobenzenes in the Soil. Environmental Science, 21(6): 32-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJKZ200006007.htm [15] Huang, C.Y., 2000. Agrology. China Agriculture Press, Beijing, 60-90 (in Chinese). [16] Huang, L.L., 2011. Ethanol Fermentation of Xylose by High Density Limiting Oxygen Yeast and Mechanism of Yeast Stress Ethanol Tolerance(Dissertation). Hunan University of Technology, Zhuzhou (in Chinese with English abstract). [17] Kao, C.M., Wu, M.J., 2000. Enhanced TCDD Degradation by Fenton's Reagent Peroxidation. Journal of Hazardous Materials, 74(3): 197-211. doi: 10.1016/S0304-3894(00)00161-8 [18] Li, L.G., Qian, X.R., 2008. Study on the Adsorption Properties of 1, 4-Dichlorobenzene on Soil. Pollution Control Techology, 21(3): 14-17, 52(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WRFZ200803008.htm [19] Liste, H.H., Alexander, M., 2000. Accumulation of Phenanthrene and Pyrene in Rhizosphere Soil. Chemosphere, 40(1): 11-14. doi: 10.1016/S0045-6535(99)00217-9 [20] Luo, Q.S., Zhang, X.H., Wang, H., et al., 2004. The Migration and Its Mechanism of Phenolic Contaminants in Soil by Electrokinetics. China Environmental Science, 24(2): 134-138(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGHJ200402001.htm [21] Mei, L.H., Cen, P.L., 2006. Modern Enzyme Engineering. Chemical Industry Press, Beijing, 107-139 (in Chinese). [22] Ran, Y., Lin, Z., Wang, X.L., et al., 2000. Sorption and Desorption of 1, 4-Dichlorobenzene on Peat. Chinese Science Bulletin, 45(Suppl. ): 2737-2742 (in Chinese). [23] Ravikumar, J.X., Gurol, M.D., 1994. Chemical Oxidation of Chlorinated Organics by Hydrogen Peroxide in the Presence of Sand. Environ. Sci. Technol. , 28(3): 394-400. doi: 10.1021/es00052a009 [24] Saichek, R.E., Reddy, K.R., 2003. Effect of pH Control at the Anode for the Electrokinetic Removal of Phenanthrene from Kaolin Soil. Chemosphere, 51(4): 273-287. doi: 10.1016/S0045-6535(02)00849-4 [25] Sawada, A., Tanaka, S., Fukushima, M., et al., 2003. Electrokinetic Remediation of Clayey Soils Containing Copper(II)-Oxinate Using Humic Acid as a Surfactant. Journal of Hazardous Materials, 96(2-3): 145-154. doi: 10.1016/S0304-3894(02)00168-1 [26] Schultz, D.S., 1997. Electroosmosis Technology for Soil Remediation: Laboratory Results, Field Trial, and Economic Modeling. Journal of Hazardous Materials, 55(1-3): 81-91. doi: 10.1016/S0304-3894(97)00014-9 [27] Shanghai Academy of Environmental Sciences, 2007. HJ 350-2007. Standard of Soil Quality Assessment for Exhibition Sites. China Environmental Science Press, Beijing (in Chinese). [28] Shu, Y.H., Huang, X.R., Jia, X.S., 2009. Competitive Sorption between 1, 2, 4-Trichlorobenzene/Tetrachloroethene and 1, 2, 4, 5-Tetrachlorobenzene on Soils/Sediments. Acta Pedologica Sinica, 46(4): 714-720(in Chinese). [29] Spigarelli, J.L., Going, J.E., Li, R., 1986. Hexachlorobenzene Levels in Multimedia Environmental Samples from Selected Chemical Production Plants. IARC Scientific Publications, (77): 155. http://www.ncbi.nlm.nih.gov/pubmed/3596704 [30] Wu, R.F., Xie, Q.J., Huang, W.H., et al., 2006. Environmental Hazardous of Hexachlorobenzene and Its Pollution Control. Chemistry & Bioengineering, 23(8): 7-10(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/hbhg200608003 [31] Xue, W., 2001. Analysis Method and Application of SPSS Statistical. Publishing House of Electronics Industry, Beijing, 207-242(in Chinese). [32] Ye, J., Zhou, Q., 2002. Fate and Biodegradation of Dichlorobenzenes in the Soil. Soil and Environmental Sciences, 11(4): 409-412(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-tryj200204020.htm [33] Zhang, D.F., 2007. Proteomies Approach for E. coli K-12 Outer Membrane Proteins Related to Disinfectant Tolerance and Antibiotic Resistance(Dissertation). Xiamen University, Xiamen (in Chinese with English abstract). [34] Zhu, L.Z., Chen, B.L., 1998. Advances in Application of Organoben Tonites in Wastewater Treatment. Advances in Environmental Science, 6(3): 53-61(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJJZ803.007.htm [35] 陈迪云, Huang, W.L., 2003. 三氯苯、二甲苯在土壤有机质中的等温吸附. 中国环境科学, 23(4): 371-375. doi: 10.3321/j.issn:1000-6923.2003.04.009 [36] 戴君, 2011. Anoxybacillus Flavithermus subsp. yunnanensis的鉴定与有机溶剂耐受特性的研究(硕士学位论文). 合肥: 安徽大学. [37] 邓振伟, 于萍, 陈玲, 2009. SPSS软件在正交实验设计、结果分析中的应用. 电脑学习, (5): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXZ200905006.htm [38] 郜红建, 蒋新, 常江, 等, 2007a. 六氯苯在红壤和黄泥土上的依时解吸特征. 农业环境科学学报, 26(2): 588- 591. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200702034.htm [39] 郜红建, 蒋新, 魏俊岭, 等, 2007b. 红壤和黄泥土对不同浓度六氯苯的吸附与解吸特征. 环境化学, 26(2): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX200702004.htm [40] 郭观林, 王翔, 关亮, 等, 2009. 基于特定场地的挥发/半挥发有机化合物(VOC/SVOC)空间分布与修复边界确定. 环境科学学报, 29(12): 2597-2605. doi: 10.3321/j.issn:0253-2468.2009.12.019 [41] 侯淑艳, 2008. 木块填料体系中游离酵母乙醇耐受性提高的机理研究(硕士学位论文). 大连: 大连理工大学. [42] 胡枭, 胡永梅, 樊耀波, 等, 2000. 土壤中氯苯类化合物的迁移行为. 环境科学, 21(6): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200006007.htm [43] 黄昌勇, 2000. 土壤学. 北京: 中国农业出版社, 60-90. [44] 黄丽霖, 2011. 高密度限氧酵母发酵木糖生产乙醇及其细胞应激乙醇耐受机理的研究(硕士学位论文). 株洲: 湖南工业大学. [45] 李娄刚, 钱晓荣, 2008.1, 4-二氯苯在土壤中吸附特性的研究. 污染防治技术, 21(3): 14-17, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200904013.htm [46] 罗启仕, 张锡辉, 王慧, 等, 2004. 土壤酚类污染物在电动力学作用下的迁移及其机理. 中国环境科学, 24(2): 134-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ200402001.htm [47] 梅乐和, 岑沛霖, 2006. 现代酶工程. 北京: 化学工业出版社, 107-139. [48] 冉勇, 林峥, 王锡莉, 等, 2000. 对二氯苯在泥炭上的吸附和解吸. 科学通报, 45(增刊): 2737-2742. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2000S1008.htm [49] 上海市环境科学研究院, 2007. HJ 350-2007. 展览会用地土壤环境质量评价标准. 北京: 中国环境科学出版社. [50] 舒月红, 黄小仁, 贾晓珊, 2009.1, 2, 4-三氯苯/四氯乙烯和1, 2, 4, 5-四氯苯在土壤/沉积物上的竞争吸附. 土壤学报, 46(4): 714-720. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200904022.htm [51] 吴荣芳, 解清杰, 黄卫红, 等, 2006. 六氯苯的环境危害及其污染控制. 化学与生物工程, 23(8): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHG200608002.htm [52] 薛薇, 2001. SPSS统计分析方法及应用. 北京: 电子工业出版社, 207-242. [53] 叶旌, 周琪, 2002. 二氯苯在土壤中的迁移行为和生物降解. 土壤与环境, 11(4): 409-412. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200204020.htm [54] 张丹凤, 2007. 大肠杆菌K-12对消毒剂耐受和抗生素耐药相关外膜蛋白组学的研究(博士学位论文). 厦门: 厦门大学. [55] 朱利中, 陈宝梁, 1998. 有机膨润土在废水处理中的应用及其进展. 环境科学进展, 6(3): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ803.007.htm