• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于微水试验倾斜承压含水层水文地质参数的推估

    刘颖 邵景力 陈家洵

    刘颖, 邵景力, 陈家洵, 2015. 基于微水试验倾斜承压含水层水文地质参数的推估. 地球科学, 40(5): 925-932. doi: 10.3799/dqkx.2015.077
    引用本文: 刘颖, 邵景力, 陈家洵, 2015. 基于微水试验倾斜承压含水层水文地质参数的推估. 地球科学, 40(5): 925-932. doi: 10.3799/dqkx.2015.077
    Liu Ying, Shao Jingli, Chen Chia-Shyun, 2015. Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer. Earth Science, 40(5): 925-932. doi: 10.3799/dqkx.2015.077
    Citation: Liu Ying, Shao Jingli, Chen Chia-Shyun, 2015. Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer. Earth Science, 40(5): 925-932. doi: 10.3799/dqkx.2015.077

    基于微水试验倾斜承压含水层水文地质参数的推估

    doi: 10.3799/dqkx.2015.077
    基金项目: 

    国家重点基础研究发展计划“973”项目 2010CB428804

    北京岩溶水资源勘查评价工程专题类第一项:数值模拟项目 BJYRS-ZT-01-01

    详细信息
      作者简介:

      刘颖(1983-),女,博士,主要从事地下水资源方面研究.E-mail:liuying_xiaoyan@163.com

      通讯作者:

      邵景力,E-mail:jshao@cugb.edu.cn

    • 中图分类号: P641

    Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer

    • 摘要: 为了准确的推估出倾斜承压含水层的水文地质参数,有必要考虑倾角对于参数推估的影响.通过建立倾斜承压含水层微水试验的数学模型,利用理论和现场试验数据分析方法,得出倾角对导水系数等水文地质参数推估的影响.结果表明:低渗透条件下,倾角越大非振荡水位恢复速度越快;高渗透条件下,倾角越大振荡水位振幅越大.储水系数越大倾角上限越小,倾角影响越明显,而倾角上限对于导水系数的变化不敏感.根据该结论建立了无因次储水系数和倾角界限之间的经验方程,用于预测倾角是否会影响水文地质参数的推估.当实测倾角大于倾角上限时,倾角影响不可以被忽略,忽略倾角会导致导水系数估值偏高,储水系数估值偏低.

       

    • 图  1  倾角为α的倾斜承压含水层中双封塞微水试验概念模型和仪器设备示意

      Fig.  1.  Schematics of a double-packer slug test in a fracture of a dip angle α

      图  2  推导流动方程的控制体示意

      Fig.  2.  The control volume for deriving the flow equation

      图  3  高、低渗透条件下倾角α对测试井内水位变化w(τ)的影响

      Fig.  3.  Influence of α on the test response for low-K and high-K conditions

      图  4  高、低渗透条件下倾角上限α*σ值的减小而增大,当σ保持不变时,α*基本不受ϕ值变化影响

      Fig.  4.  The limiting angle α*increases as σ decreases, while remains relatively insensitive to ϕ for the same σ for low-K and high-K conditions

      图  5  α*σ之间关系的经验公式

      Fig.  5.  The empirical relationship for α* as a function of σ

      图  6  倾角为47°的裂隙含水层微水试验现地数据分析

      Fig.  6.  Analysis of the slug test data in the fracture of a dip angle equal to 47°

      图  7  模型结果对T值变化±30%的敏感性

      Fig.  7.  Sensitive of the model solution to a ±30% change of transmissivity

      表  1  符号说明

      Table  1.   Nomenclature

      符号 定义 量纲
      b 含水层垂向厚度 [L]
      g 重力加速度 [L/T2]
      H(t) 测试井内水位 [L]
      H0 初始水位位移 [L]
      h(x, y, t) 承压含水层水头 [L]
      hw(t) 井边含水层水头的圆周平均值 [L]
      K 渗透系数 [L/T]
      K0(x) 0级第二类修正贝赛尔函数
      K1(x) 1级第二类修正贝赛尔函数
      l 与倾斜含水层平行方向的距离 [L]
      Le 测试井有效井长 [L]
      P(x, y, t) 承压含水层压力水头 [L]
      r 径向距离 [L]
      rc 连接管半径 [L]
      rw 测试井半径 [L]
      S 储水系数 [-]
      s 拉普拉斯转换变量 [-]
      T 导水系数 [L2/T]
      t 试验时间 [T]
      w(τ) =H(t)/H0, 无因次测试井内水位 [-]
      Z(x, y) 承压含水层位置水头 [L]
      α 含水层倾角 [-]
      α* 倾角上限 [-]
      β 振荡的阻尼系数 [T-1]
      β* =βrc2/2T,无因次β [-]
      ηp(τ) =P(r, t)/H0,含水层无因次压力水头 [-]
      ηw(τ) =hw(t)/H0, 无因次hw(t) [-]
      θ =tan-1(y/x') [-]
      λ(θ) (cos2θcos2α+sin2θ)0.5 [-]
      ρ =r/rw,无因次径向距离 [-]
      σ =2rw2S/rc2,无因次储水系数 [-]
      τ =t/(rc2/2T),无因次时间 [-]
      υ =S/T [T/L2]
      ϕ =2T(Le/g)0.5/rc2,无因次导水系数 [-]
      ω 振荡的频率 [T-1]
      ω* =ωrc2/2T,无因次ω [-]
      下载: 导出CSV
    • [1] Alexander, M., Berg, S.J., Illman, W.A., 2011. Field Study of Hydrogeologic Characterization Methods in a Heterogeneous Aquifer. Groundwater, 49(3): 365-382. doi: 10.1111/j.1745-6584.2010.00729.x
      [2] Boussinesq, J., 1877. Essai sur la Théorie des Eaux Courantes. Mémoires présentés par divers savants à l'Académie des Sciences de l'Insitute National de France, Paris (in French).
      [3] Butler Jr, J.J., 1998. The Design, Performance, and Analysis of Slug Tests. Lewis Publishers, Boca Raton, 55-163. http://agris.fao.org/agris-search/search.do?recordID=US201300014821
      [4] Butler Jr, J.J., Garnett, E.J., Healey, J.M., 2003. Analysis of Slug Tests in Formations of High Hydraulic Conductivity. Groundwater, 41(5): 620-630. doi: 10.1111/j.1745-6584.2003.tb02400.x
      [5] Butler Jr, J.J., Zhan, X.Y., 2004. Hydraulic Tests in Highly Permeable Aquifers. Water Resources Research, 40(12): W12402. doi: 10.1029/2003WR002998
      [6] Chen, C.S., 2006. An Analytic Data Analysis Method for Oscillatory Slug Tests. Groundwater, 44(4): 604-608. doi: 10.1111/j.1745-6584.2006.00202.x
      [7] Chen, C.S., Wu, C.R., 2006. Analysis of Depth-Dependent Pressure Head of Slug Tests in Highly Permeable Aquifers. Groundwater, 44(3): 472-477. doi: 10.1111/j.1745-6584.2005.00152.x
      [8] de Hoog, F.R., Knight, J.H., Stokes, A.N., 1982. An Improved Method for Numerical Inversion of Laplace Transforms. SIAM Journal on Scientific and Statistical Computing, 3(3): 357-366. doi: 10.1137/0903022
      [9] Kabala, Z.J., Pinder, G.F., Milly, P.C.D., 1985. Analysis of Well-Aquifer Response to a Slug Test. Water Resources Research, 21(9): 1433-1436. doi: 10.1029/WR021i009p01433
      [10] Kipp Jr, K.L., 1985. Type Curve Analysis of Inertial Effects in the Response of a Well to a Slug Test. Water Resources Research, 21(9): 1397-1408. doi: 10.1029/WR021i009p01397
      [11] McElwee, C.D., Zenner, M.A., 1998. A Nonlinear Model for Analysis of Slug-Test Data. Water Resources Research, 34 (1): 55-66. doi: 10.1029/97WR02710
      [12] Ostendorf, D.W., DeGroot, D.J., Dunaj, P.J., et al., 2005. A Closed Form Slug Test Theory for High Permeability Aquifers. Groundwater, 43(1): 87-101. doi: 10.1111/j.1745-6584.2005.tb02288.x
      [13] Ross, H.C., McElwee, C.D., 2007. Multi-Level Slug Tests to Measure 3-D Hydraulic Conductivity Distributions. Natural Resources Research, 16(1): 67-79. doi: 10.1007/s11053-007-9034-9
      [14] Springer, R.K., Gelhar, L.W., 1991. Characterization of Large-Scale Aquifer Heterogeneity in Glacial Outwash by Analysis of Slug Tests with Oscillatory Response, Cape Cod, Massachusetts. U.S. Geol. Surv. Water Resour. Invest. Rep. , 91: 36-40. http://www.researchgate.net/publication/313619232_Characterization_of_large-scale_aquifer_heterogeneity_in_glacial_outwash_by_analysis_of_slug_tests_with_oscillatory_response_Cape_Cod_Massachusetts
      [15] van der Kamp, G., 1976. Determining Aquifer Transmissivity by Means of Well Response Tests: The Underdamped Case. Water Resources Research, 12(1): 71-77. doi: 10.1029/WR012i001p00071
      [16] Wylie, C.R., Barrett, L.C., 1982. Advanced Engineering Mathematics. 5th ed., McGraw-Hill Inc., New York.
      [17] Xue, Y.Q., Zhu, X.Y., Wu, J.C., et al., 1997. Groundwater Dynamics. Geological Publishing House, Beijing, 3-46 (in Chinese).
      [18] Zhao, Y.R., Zhou, Z.F., 2012. Comparative Study on Field Slug Tests to Determine Aquifer Permeability Based on Kipp Model and CBP Model. Geotechnical Investigation and Surveying, 12: 32-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC201212009.htm
      [19] Zlotnik, V.A., McGuire, V.L., 1998. Multi-Level Slug Tests in Highly Permeable Formations: 1. Modification of the Springer-Gelhar (SG) Model. Journal of Hydrology, 204(1-4): 271-282. doi: 10.1016/S0022-1694(97)00128-5
      [20] Zurbuchen, B.R., Zlotnik, V.A., Butler Jr, J.J., 2002. Dynamic Interpretation of Slug Test in Highly Permeable Aquifers. Water Resources Research, 38(3): 1025-1042. doi: 10.1029/2001WR000354
      [21] 薛禹群, 朱学愚, 吴吉春, 等, 1997. 地下水动力学. 北京: 地质出版社, 3-46.
      [22] 赵燕容, 周志芳, 2012. 基于Kipp和CBP模型确定含水层渗透性的现场微水试验对比研究. 工程勘察, 12: 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201212009.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  3272
    • HTML全文浏览量:  172
    • PDF下载量:  709
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-09-27
    • 刊出日期:  2015-05-15

    目录

      /

      返回文章
      返回