• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    承压含水层中非完整井附近“非达西-达西”两区渗流模型近似解析解

    文章 刘凯 陈晓恋

    文章, 刘凯, 陈晓恋, 2015. 承压含水层中非完整井附近“非达西-达西”两区渗流模型近似解析解. 地球科学, 40(5): 918-924. doi: 10.3799/dqkx.2015.076
    引用本文: 文章, 刘凯, 陈晓恋, 2015. 承压含水层中非完整井附近“非达西-达西”两区渗流模型近似解析解. 地球科学, 40(5): 918-924. doi: 10.3799/dqkx.2015.076
    Wen Zhang, Liu Kai, Chen Xiaolian, 2015. Approximate Analytical Solutions for Two-Region Non-Darcian Flow to a Partially Penetrating Well. Earth Science, 40(5): 918-924. doi: 10.3799/dqkx.2015.076
    Citation: Wen Zhang, Liu Kai, Chen Xiaolian, 2015. Approximate Analytical Solutions for Two-Region Non-Darcian Flow to a Partially Penetrating Well. Earth Science, 40(5): 918-924. doi: 10.3799/dqkx.2015.076

    承压含水层中非完整井附近“非达西-达西”两区渗流模型近似解析解

    doi: 10.3799/dqkx.2015.076
    基金项目: 

    国家自然科学基金项目 41372253

    国家自然科学基金项目 41002082

    国家重点基础研究发展计划项目 2010CB428802

    中央高校基本科研业务费专项基金项目 CUG140501

    中央高校基本科研业务费专项基金项目 CUG120113

    详细信息
      作者简介:

      文章(1982-),男,博士,副教授,主要从事地下水渗流、污染物迁移等方面的研究.E-mail: wenzhangcau@gmail.com

    • 中图分类号: P641.2

    Approximate Analytical Solutions for Two-Region Non-Darcian Flow to a Partially Penetrating Well

    • 摘要: 抽水井附近由于流速过快往往发生非达西流,而远离抽水井随着流速下降又变为达西流.为了描述这些特征,建立了承压含水层中非完整井附近“非达西-达西”两区渗流模型,即距离抽水井较近的区域由于流速较快假设发生非达西渗流,并利用Izbash公式刻画,而距离抽水井较远由于流速较慢假设仍然满足达西定律,含水层中垂向流速较小也利用达西定律描述.通过线性化近似方法结合Laplace变换和有限Fourier余弦变换对模型进行了求解,分析探讨了该两区模型下水位降深曲线特征.结果表明:抽水初期,非达西渗流区域水位降深与全非达西渗流模型结果吻合,而抽水后期两区模型非达西渗流区域的水位降深与全达西模型水位降深基本一致,但大于全非达西渗流模型的水位降深;抽水初期,两区模型中达西渗流区域的水位降深比全达西渗流模型结果大,但比全非达西渗流模型结果小;对不同时间的水位降深随井距变化曲线分析发现非达西渗流区域水位降深随Izbash公式中的幂指数n增大而减小,而在达西渗流区域水位降深基本不受n值的影响.研究成果对非完整井抽水试验参数反演具有重要理论意义.

       

    • 图  1  非完整抽水井附近两区模型渗流物理模型

      Fig.  1.  The schematic of two-region model near a partially penetrating well

      图  2  简化模型与Hantush模型结果比较

      Fig.  2.  Comparison between the results of this study and the solution of Hantush model for Darcian flow case

      图  3  不同抽水模型下非达西区域水位降深对比

      Fig.  3.  Comparison of the drawdown in non-Darcian flow region under for different models

      图  4  不同抽水模型下达西区域水位降深对比

      Fig.  4.  Comparison of the drawdown in Darcian flow region under for different models

      图  5  不同n值时含水层水位降深-距离曲线

      Fig.  5.  Drawdown-distance behavior for different n values

      图  6  不同抽水时间下含水层水位降深-距离曲线

      Fig.  6.  Drawdown-distance behavior for different pumping times

    • [1] Chang, A.D., Guo, J.Q., Wang, H.S., 2000. The Analytical Solution of Unsteady Well Flow with Two Flow Regimes. Journal of Hydraulic Engineering, 31(6): 49-53, 66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200006008.htm
      [2] Crump, K.S., 1976. Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation. Journal of the ACM, 23(1): 89-96. doi: 10.1145/321921.321931
      [3] de Hoog, F.R., Knight, J.H., Stokes, A.N., 1982. An Improved Method for Numerical Inversion of Laplace Transforms. SIAM Journal on Scientific and Statistical Computing, 3(3): 357-366. doi: 10.1137/0903022
      [4] Hantush, M.S., 1964. Hyraulics of Wells. In: Chow, V.T., ed., Advances in Hydroscience, Academic Press, Inc., New York.
      [5] Mathias, S.A., Butler, A.P., Zhan, H.B., 2008. Approximate Solutions for Forchheimer Flow to a Well. Journal of Hydraulic Engineering, 134(9): 1318-1325. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1318)
      [6] Sen, Z., 1988. Type Curves for Two-Regime Well Flow. Journal of Hydraulic Engineering, 114(12): 1461-1484. doi: 10.1061/(ASCE)0733-9429(1988)114:12(1461)
      [7] Stehfest, H., 1970a. Algorithm 368: Numerical Inversion of Laplace Transforms [D5]. Communications of the ACM, 13(1): 47-49. doi: 10.1145/361953.361969
      [8] Stehfest, H., 1970b. Remark on Algorithm 368: Numerical Inversion of Laplace Transforms. Communications of the ACM, 13(10): 624-625. doi: 10.1145/355598.362787
      [9] Wan, J.W., Huang, K., Chen, C.X., 2013. Reassessing Darcy' Law on Water Flow in Porous Media. Earth Science—Journal of China University of Geosciences, 38(6): 1327-1330 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.130
      [10] Wang, P.J., 1996. Theory for Two-Regime Well Flow in Confined Aquifers. Irrigation and Drainage, 15(4): 1-9 (in Chinese with English abstract).
      [11] Wang, Q.R., Tang, Z.H., Wen, Z., et al., 2012. Numeric Simulation for Flow to a Pumping Well with Moving Boundary of the Non-Darcian Flow Region in a Leaky Aquifer. Journal of Hydraulic Engineering, 43(10): 1171-1178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SLXB201210008.htm
      [12] Wen, Z., Huang, G.H., Liu, Z.T., et al., 2011. An Approximate Analytical Solution for Two-Region Non-Darcian Flow toward a Well in a Leaky Aquifer. Earth Science—Journal of China University of Geosciences, 36(6): 1165-1172 (in Chinese with English abstract).
      [13] Wen, Z., Huang, G.H., Zhan, H.B., 2008a. Non-Darcian Flow toward a Finite-Diameter Vertical Well in a Confined Aquifer. Pedosphere, 18(3): 288-303. doi: 10.1016/S1002-0160(08)60019-3
      [14] Wen, Z., Huang, G.H., Zhan, H.B., et al., 2008b. Two-Region Non-Darcian Flow toward a Well in a Confined Aquifer. Advances in Water Resources, 31(5): 818-827. doi: 10.1016/j.advwatres.2008.01.014
      [15] Wen, Z., Huang, G.H., Zhan, H.B., 2009. A Numerical Solution for Non-Darcian Flow to a Well in a Confined Aquifer Using the Power Law Function. Journal of Hydrology, 364(1-2): 99-106. doi: 10.1016/j.jhydrol.2008.10.009
      [16] Wen, Z., Liu, K., Chen, X.L., 2013. Approximate Analytical Solution for Non-Darcian Flow toward a Partially Penetrating Well in a Confined Aquifer. Journal of Hydrology, 498(8): 124-131. doi: 10.1016/j.jhydrol.2013.06.027
      [17] Wu, Y.S., 2001. Non-Darcy Displacement of Immiscible Fluids in Porous Media. Water Resources Research, 37(12): 2943-2950. doi: 10.1029/2001WR000389
      [18] 常安定, 郭建青, 王洪胜, 2000. 两种流态区域条件下的井流问题的解析解. 水利学报, 31(6): 49-53, 66. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200006008.htm
      [19] 万军伟, 黄琨, 陈崇希, 2013. 达西定律成立吗. 地球科学——中国地质大学学报, 38(6): 1327-1330. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201306020.htm
      [20] 王鹏举, 1996. 考虑非达西流情况下地下水向集水建筑物运动的非稳定理论的研究. 灌溉排水, 15(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS604.000.htm
      [21] 王全荣, 唐仲华, 文章, 等, 2012. 越流含水层抽水井附近非达西流与达西流区界面位置变化规律研究. 水利学报, 43(10): 1171-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201210008.htm
      [22] 文章, 黄冠华, 刘壮添, 等, 2011. 越流含水层中抽水井附近非达西流两区模型近似解析解. 地球科学——中国地质大学学报, 36(6): 1165-1172 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106023.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  3853
    • HTML全文浏览量:  138
    • PDF下载量:  453
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-09-15
    • 刊出日期:  2015-05-15

    目录

      /

      返回文章
      返回