• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    影响海相烃源岩热解生烃过程的地质条件

    郑伦举 关德范 郭小文 马中良

    郑伦举, 关德范, 郭小文, 马中良, 2015. 影响海相烃源岩热解生烃过程的地质条件. 地球科学, 40(5): 909-917. doi: 10.3799/dqkx.2015.075
    引用本文: 郑伦举, 关德范, 郭小文, 马中良, 2015. 影响海相烃源岩热解生烃过程的地质条件. 地球科学, 40(5): 909-917. doi: 10.3799/dqkx.2015.075
    Zheng Lunju, Guan Defan, Guo Xiaowen, Ma Zhongliang, 2015. Key Geological Conditions Affecting Pyrolysis Experiments of Marine Source Rocks for Hydrocarbon Generation. Earth Science, 40(5): 909-917. doi: 10.3799/dqkx.2015.075
    Citation: Zheng Lunju, Guan Defan, Guo Xiaowen, Ma Zhongliang, 2015. Key Geological Conditions Affecting Pyrolysis Experiments of Marine Source Rocks for Hydrocarbon Generation. Earth Science, 40(5): 909-917. doi: 10.3799/dqkx.2015.075

    影响海相烃源岩热解生烃过程的地质条件

    doi: 10.3799/dqkx.2015.075
    基金项目: 

    国家重点基础研究发展计划“973”项目 2005CB422102

    国家自然科学基金项目 41302110

    中国石化科技开发部项目 P11060

    详细信息
      作者简介:

      郑伦举(1966-),男,高级工程师,博士,从事油气地球化学和石油地质实验研究.E-mail: zhenglj.syky@sinopec.com

      通讯作者:

      郭小文,E-mail: cuggxw@163.com

    • 中图分类号: P618.13

    Key Geological Conditions Affecting Pyrolysis Experiments of Marine Source Rocks for Hydrocarbon Generation

    • 摘要: 热解生烃实验是研究油气生成机理与定量评价烃源岩生烃潜力的重要方法.烃源岩热解生烃模拟结果不仅与温度、压力和时间等因素有关,而且与地层孔隙水及压实成岩作用等地质因素密切相关.采用高压流体和高压釜(低压水蒸气)两种生烃热模拟方法对低成熟海相二叠统大隆组(P2d)黑色泥岩进行了热解生烃实验模拟.对比分析两组实验结果表明地层孔隙热解实验有利于液态油的生成,不利于液态油向气态烃的转化,并极大地提高了干酪根的生油气潜力,显示了高压液态水、流体压力和孔隙空间等地质因素对烃源岩中有机质热成熟生烃反应的重要影响.这种影响可能与高压液态水的近临界特性有关,近临界特性地层水的参与改变了干酪根热力生烃反应的物理化学行为.推断在实际地质温压(100~200 ℃,30~120 MPa)条件下,烃源岩孔隙中的地层水是一种相对低温高压液态水,具有水的近临界物理化学特性,因此高压流体生烃热模拟实验与实际地层情况更为接近,能更有效地评价烃源岩生烃潜力.

       

    • 图  1  两种热解生烃模拟实验仪的原理结构示意

      图 1a:FPS热解生烃模拟实验仪;1.液压控制系统;2.温度传感器;3.高压反应釜;4.油缸A;5.油缸B;6.箱式电热炉;7.四通阀;8.压力传感器;9.高压气动阀;10.二位三通电磁阀;11.减压阀;12.气瓶;13.气液分离器;14.冷阱;15.真空表;16.电动阀;17.储气室;18.活塞容器;19.截止阀;20.高压器;21.真空泵;22.压力表;23.三通阀.图 1b:CPS热解生烃模拟实验仪;1.箱式电热炉;2.样品;3.传感器探头;4.高压反应釜;5.温度传感器;6.压力传感器;7.四通阀;8.截止阀;9.真空泵;10.气液搜集器;11.杜瓦瓶冷阱;12.气体定量瓶;13.高低瓶;14.排水集气瓶;15.控制器

      Fig.  1.  The principle sketch of the two physical simulation apparatus for the hydrocarbon generation

      图  2  两种热解实验氢气产率与Ro关系曲线

      Fig.  2.  Relationship between the H2 generation rate and Ro for the two types of pyrolysis simulation experiments

      图  3  两种热解实验烃气产率与Ro关系曲线

      Fig.  3.  Relationship between the hydrocarbon gas generation rate and Ro for the two types of pyrolysis simulation experiments

      图  4  两种热解实验CO2产率与Ro关系

      Fig.  4.  Relationship between the CO2 production and Ro for the two types of pyrolysis simulation experiments

      图  5  两种热解实验加热温度与镜质体反射率的关系

      Fig.  5.  Relationship between the pyrolysis temperature and Ro for the two types of pyrolysis simulation experiments

      图  6  两种热解实验加热温度与固体残渣氢指数关系

      Fig.  6.  Relationship between the pyrolysis temperature and Hydrogen index for the two types of pyrolysis simulation experiments

      图  7  两种热解实验沥青/油产率与镜质体反射率的关系

      Fig.  7.  Relationship between the bitumen/oil generation rate and Ro for the two types of pyrolysis simulation experiments

      表  1  两种不同模拟方式的实验边界条件

      Table  1.   Experiments boundary conditions for the two types of pyrolysis simulation experiments

      模拟方式 模拟温度(℃) 恒温时间(h) 静岩压力(MPa) 流体压力(MPa) 加水量(mL) 生烃空间(mL)
      序号 FPS CPS FPS CPS FPS CPS FPS CPS
      1 250 48 43 0 19.8 5.9 21 10 21 450
      2 275 48 47 0 22.7 - 21 - 21 -
      3 300 48 58 0 27.4 8.6 21 10 21 450
      4 325 48 66 0 30.6 11.8 20 10 21 450
      5 350 48 71 0 34.5 13.4 19 10 21 450
      6 370 48 75 0 37.9 17.1 17 10 21 450
      下载: 导出CSV

      表  2  两种热解实验条件下气体组分数据

      Table  2.   Gas components for the two types of pyrolysis simulation experiments

      热解方式 热解温度(℃)
      250 275 300 325 350 370
      FPS CPS FPS FPS CPS FPS CPS FPS CPS FPS CPS
      H2 0.49 73.94 11.67 14.46 76.76 9.83 53.56 0.78 43.95 0.42 39.81
      CO2 3.89 14.79 32.47 30.65 11.22 34.34 27.33 23.05 26.99 22.65 26.55
      CH4 0.31 5.62 15.33 30.56 8.95 30.13 10.42 42.55 13.77 43.19 16.74
      C2H6 0.03 0.50 2.10 14.21 0.62 14.33 4.46 21.33 7.13 20.16 7.65
      C2H4 0.00 0.16 0.03 0.01 0.22 0.01 0.13 0.01 0.10 0.00 0.05
      C3H8 0.01 0.14 0.98 4.14 0.18 4.85 1.68 7.83 3.42 8.45 4.34
      C3H6 0.01 0.09 0.05 0.02 0.11 0.03 0.29 0.02 0.39 0.02 0.22
      iC4H10 0.00 0.01 0.13 0.36 0.01 0.57 0.19 0.91 0.49 1.08 0.69
      nC4H10 0.00 0.03 0.27 0.68 0.03 1.50 0.51 1.86 1.14 2.19 1.67
      C4H8 0.00 0.01 0.02 0.00 0.01 0.01 0.07 0.01 0.13 0.01 0.11
      iC5H12 0.00 0.00 0.06 0.08 0.01 0.34 0.11 0.30 0.24 0.37 0.42
      nC5H12 0.00 0.01 0.05 0.04 0.01 0.36 0.14 0.23 0.32 0.27 0.51
      C6+ 0.00 0.03 0.06 0.01 0.04 0.30 0.25 0.05 0.65 0.06 0.55
      C1/(C1-C4) 0.85 0.85 0.80 0.61 0.88 0.57 0.57 0.57 0.50 0.57 0.51
      下载: 导出CSV

      表  3  两种热解实验气体与沥青产率值

      Table  3.   Gas and bitumen generation rates in the two types of pyrolysis simulation experiments

      热解温度(℃) Ro(%) CO2产率
      (mL/g)
      H2产率
      (mL/g)
      烃气产率
      (mg/g)
      沥青/油产率
      (mg/g)
      FPS CPS FPS CPS FPS CPS FPS CPS FPS CPS
      250 0.58 0.61 1.25 1.89 0.28 12.38 0.18 1.15 68.06 13.53
      275 0.62 - 1.16 - 0.42 - 0.63 - 102.79 -
      300 0.75 0.78 0.90 2.26 0.42 15.44 1.53 1.69 207.06 65.18
      325 0.84 0.96 3.04 18.36 0.87 35.98 5.24 14.24 361.39 215.65
      350 1.02 1.15 9.14 32.89 0.31 53.57 33.19 43.72 376.56 161.37
      370 1.21 1.36 10.92 56.54 0.20 84.79 41.21 91.13 358.44 95.36
      下载: 导出CSV

      表  4  两种热解实验固体残样岩石热解参数

      Table  4.   Rock pyrolysis data for the residues in the two types of pyrolysis simulation experiments

      温度(℃) Ro(%) S1(mg/g) S2(mg/g) Tmax(℃) PC(%) TOC(%) HI(mg/g)
      FPS CPS FPS CPS FPS CPS FPS CPS FPS CPS FPS CPS FPS CPS
      250 0.58 0.61 1.79 1.35 39.78 40.25 437 435 3.47 3.42 12.32 12.04 323 334
      275 0.62 1.20 - 40.94 - 435 - 3.52 - 11.98 - 342 - -
      300 0.75 0.78 2.42 0.40 32.65 37.96 439 437 2.93 3.24 10.31 11.85 317 320
      325 0.84 0.96 3.08 4.51 29.58 30.13 439 440 2.74 2.91 9.39 11.7 315 258
      350 1.02 1.15 6.64 3.19 18.08 14.19 441 451 1.67 1.46 11.59 10.95 156 130
      370 1.21 1.36 5.77 1.97 10.23 5.90 441 458 1.34 0.67 10.57 10.54 97 56
      下载: 导出CSV
    • [1] Carr, A.D., Snape, C.E., Meredith, W., et al., 2009. The Effect of Water Pressure on Hydrocarbon Generation Reactions: Some Inferences from Laboratory Experiments. Petroleum Geoscience, 15(1): 17-26. doi: 10.1144/1354-079309-797
      [2] Chen, J.Y., Liu, G.Y., Jin, L.J., 2009. Water in the Earth's Interior and Abiotic Formation of Hydrocarbon. Earth Science Frontiers, 16(1): 33-40 (in Chinese with English abstract).
      [3] Chen, J.Y., Zhang, H., Zheng, H.F., et al., 2006. In Situ Visualization of Pyrolysis of Organic Matter in High-Temperature and High-Pressure Water—Taking Kerogen and Asphalt as an Example. Petroleum Geology & Experiment, 28(1): 73-77 (in Chinese with English abstract).
      [4] Gao, G., 2000. Method of Petroleum-Generating Simulation and Its Petroleum Geological Significance. Natural Gas Geoscience, 11(2): 25-29 (in Chinese with English abstract).
      [5] Gao, G., Gang, W.Z., Hao, S.S., 1995. An Approach to the Genesis of Carbon Dioxide from the Thermal Hydrolysis Modelling Experiment of Carbonate Source Rocks. Experimental Petroleum Geology, 17(3): 210-213 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD502.013.htm
      [6] Helgeson, H.C., Knox, A.M., Owens, C.E., et al., 1993. Petroleum, Oil Field Waters, and Authigenic Mineral Assemblages are They in Metastable Equilibrium in Hydrocarbon Reservoirs. Geochimica et Cosmochimica Acta, 57(14): 3295-3339. doi: 10.1016/0016-7037(93)90541-4
      [7] Jiang, F., Zhang, Y.L., Du, J.G., 1996. Advance of Pyrolysis Experimentation on Hydrocarbon Genesis. Advance in Earth Sciences, 11(5): 453-459 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ605.004.htm
      [8] Lewan, M.D., Winters, J.C., McDonald, J.H., 1979. Generation of Oil-Like Pyrolyzates from Organic-Rich Shales. Science, 203(4383): 897-899. doi: 10.1126/science.203.4383.897
      [9] Lewan, M.D., 1997. Experiments on the Role of Water in Petroleum Formation. Geochimica et Cosmochimica Acta, 61(17): 3691-3723. doi: 10.1016/S0016-7037(97)00176-2
      [10] Lewan, M.D., 1998. Sulphur-Radical Control on Petroleum Formation Rates. Nature, 391(6663): 164-166. doi: 10.1038/34391
      [11] Liu, W.H., Wang, W.C., 2000. The Organic (Biogenic) and Inorganic (Non-Biogenic) Sources of Hydrocarbons—Thought on Theory of Oil and Gas Formation. Bulletin of Mineralogy, Petrology and Geochemistry, 19(3): 179-186 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200003008.htm
      [12] Qin, J.Z., Liu, J.W., Liu, B.Q., et al., 2002. Hydrocarbon Yield and Geochemical Parameters Affected by Heating Time and Added Water Amount in the Simulation Test. Petroleum Geology & Experiment, 24(2): 152-157 (in Chinese with English abstract).
      [13] Seewald, J.S., 2003. Organic-Inorganic Interactions in Petroleum-Producing Sedimentary Basins. Nature, 426(6964): 327-333. doi: 10.1038/nature02132
      [14] Tissot, B.P., Welte, D.H., 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, New York.
      [15] Wang, X.F., Liu, W.H., Xu, Y.C., et al., 2006. The Thermal Simulation Experiment of Water in the Organic Matter in the Formation of Gaseous Hydrocarbon Evolution. Progress in Natural Science, 16(10): 1275-1281 (in Chinese).
      [16] Wang, X.X., Wang, G.L., Cai, J.G., et al., 2006. Organic-Clay Complex and Hydrocarbon Generation. Petroleum Industry Press, Beijing, 126-134 (in Chinese).
      [17] Zheng, L.J., Qin, J.Z., He, S., et al., 2009. Preliminary Study of Formation Porosity Thermocompression Simulation Experiment of Hydrocarbon Generation and Expulsion. Petroleum Geology & Experiment, 31(3): 296-302, 306 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200903019.htm
      [18] Zhou, S.X., Zou, H.L., Xie, Q.L., et al., 2006. Organic-Inorganic Interactions during the Formation of Oils in Sedimentary Basin. Natural Gas Geoscience, 17(1): 42-47 (in Chinese with English abstract).
      [19] 陈晋阳, 刘桂洋, 金鹿江, 2009. 地球内部水与无机成烃. 地学前缘, 16(1): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901011.htm
      [20] 陈晋阳, 张红, 郑海飞, 等, 2006. 高温高压下水中有机质降解过程的原位观测——以干酪根和沥青质为例. 石油实验地质, 28(1): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200601013.htm
      [21] 高岗, 2000. 油气生成模拟方法及其石油地质意义. 天然气地球科学, 11(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200002004.htm
      [22] 高岗, 刚文哲, 郝石生, 1995. 碳酸盐烃源岩加水热模拟实验中二氧化碳成因探讨. 石油地质实验, 17(3): 210-213. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD502.013.htm
      [23] 姜峰, 张友联, 杜建国, 1996. 油气生产热模拟实验研究进展. 地球科学进展, 11(5): 453-459. doi: 10.3321/j.issn:1001-8166.1996.05.005
      [24] 刘文汇, 王万春, 2000. 烃类的有机(生物)与无机(非生物)来源——油气成因理论思考之二. 矿物岩石地球化学通报, 19(3): 179-186. doi: 10.3969/j.issn.1007-2802.2000.03.007
      [25] 秦建中, 刘井旺, 刘宝泉, 等, 2002. 加温时间、加水量对模拟实验油气产率及地化参数的影响. 石油实验地质, 24(2): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200202011.htm
      [26] 王晓峰, 刘文汇, 徐永昌, 等, 2006. 水在有机质形成气态烃演化中作用的热模拟实验研究. 自然科学进展, 16(10): 1275-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200610011.htm
      [27] 王行信, 王国力, 蔡进攻, 等, 2006. 有机粘土复合体与油气生成. 北京: 石油工业出版社, 126-134.
      [28] 郑伦举, 秦建中, 何生, 等, 2009. 地层孔隙热压生排烃模拟实验初步研究. 石油实验地质, 31(3): 296-302, 306. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200903019.htm
      [29] 周世新, 邹红亮, 解启来, 等, 2006. 沉积盆地油气形成过程中有机-无机相互作用. 天然气地球科学, 17(1): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200601009.htm
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  3228
    • HTML全文浏览量:  156
    • PDF下载量:  661
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-10-10
    • 刊出日期:  2015-05-15

    目录

      /

      返回文章
      返回