• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    浮游有孔虫标准化壳体重量测试方法及在西太平洋的应用

    安佰正 李铁刚 孙晗杰 熊志方 常凤鸣

    安佰正, 李铁刚, 孙晗杰, 熊志方, 常凤鸣, 2015. 浮游有孔虫标准化壳体重量测试方法及在西太平洋的应用. 地球科学, 40(5): 881-889. doi: 10.3799/dqkx.2015.072
    引用本文: 安佰正, 李铁刚, 孙晗杰, 熊志方, 常凤鸣, 2015. 浮游有孔虫标准化壳体重量测试方法及在西太平洋的应用. 地球科学, 40(5): 881-889. doi: 10.3799/dqkx.2015.072
    An Baizheng, Li Tiegang, Sun Hanjie, Xiong Zhifang, Chang Fengming, 2015. Application of Planktonic Foraminifera Size-Normalized Shell Weight in the Western Pacific. Earth Science, 40(5): 881-889. doi: 10.3799/dqkx.2015.072
    Citation: An Baizheng, Li Tiegang, Sun Hanjie, Xiong Zhifang, Chang Fengming, 2015. Application of Planktonic Foraminifera Size-Normalized Shell Weight in the Western Pacific. Earth Science, 40(5): 881-889. doi: 10.3799/dqkx.2015.072

    浮游有孔虫标准化壳体重量测试方法及在西太平洋的应用

    doi: 10.3799/dqkx.2015.072
    基金项目: 

    中国科学院战略性先导科技专项项目 XDA10010305

    国家海洋局专项项目 GASI-04-01-02

    国家自然科学基金项目 41230959

    国家自然科学基金项目 41206044

    详细信息
      作者简介:

      安佰正(1984-),男,博士研究生,主要从事古海洋学、浮游有孔虫研究.E-mail: an_baizheng@126.com

      通讯作者:

      李铁刚,E-mail: tgli@qdio.ac.cn

    • 中图分类号: P736.2

    Application of Planktonic Foraminifera Size-Normalized Shell Weight in the Western Pacific

    • 摘要: 使用标准化壳体重量法和传统壳体重量法分别对中国南海(South China Sea,简称SCS)站表层沉积物和MD06-3052岩心沉积物样品进行了测试,获得了浮游有孔虫种属Globigerinoides ruber(G. ruber)的标准化壳体重量和传统壳体重量.通过对SCS站表层沉积物中G. ruber标准化壳体重量与传统壳体重量的比较,认为在该海域使用标准化壳体重量替代性指标能够更好的排除壳体粒径的干扰.通过对MD06-3052岩心中G. ruber标准化壳体重量与南极Vostok冰心的CO2浓度(pCO2)曲线进行对比,认为标准化壳体重量方法能够较好的反映出表层海水[CO32-]的变化.标准化壳体重量方法快速简便,指示性好,在探讨晚更新世以来表层海水在全球碳循环的重要作用中,是一个很有潜力的指标.

       

    • 图  1  浮游有孔虫标准化壳体重量方案流程

      Fig.  1.  Process of planktonic foraminifera size-normalized shell weight method

      图  2  ImageJ软件对图像进行锐化和寻找边缘

      Fig.  2.  Sharpen and find edges using ImageJ

      图  3  使用ImageJ软件获得有孔虫的最小外切圆

      Fig.  3.  Get minimum excircle of foraminifera shell using ImageJ

      图  4  SCS站浮游有孔虫G. ruber传统壳体重量方法与标准化壳体重量方法的对比

      传统壳体重量(红色)与壳体直径的相关系数R=0.840;标准化壳体重量(蓝色)与壳体直径的相关系数R=0.299

      Fig.  4.  Traditional shell weight method and size-normalized shell weight method for G. ruber in SCS

      图  5  SCS站表层沉积物浮游有孔虫G. ruber壳体重量与样本中壳体总数的关系

      Fig.  5.  Relationship of shell weight and sum of G. ruber of surface sediments in SCS

      图  6  MD06-3052岩心浮游有孔虫G. ruber传统壳体重量方法(a)与标准化壳体重量方法(b)的对比

      图 6a中相关系数R=0.742;图 6b中相关系数R=0.451

      Fig.  6.  Traditional shell weight method (a) and size-normalized shell weight method (b) for G. ruber in MD06-3052

      图  7  MD06-3052岩心浮游有孔虫G. ruber标准化壳体重量(蓝色曲线)与南极冰心大气pCO2变化曲线(粉色曲线)对比

      Fig.  7.  Size-normalized shell weight of planktonic foraminifera G. ruber in MD06-3052(blue line) and Vostok pCO2 record (pink line)

      表  1  MD06-3052岩心浮游有孔虫G. ruber标准化壳体重量及传统壳体重量

      Table  1.   Size-normalized shell weight and traditional shell weight of planktonic foraminifera G. ruber from MD06-3052

      样品号 样品层位(cm) 年代(ka BP) 壳体数量(个) 传统壳体重量(μg) 标准化壳体重量(μg)
      1 54~56 3.34 6 7.83 8.84
      2 182~184 10.58 11 8.45 10.60
      3 238~240 14.45 6 12.50 12.97
      4 278~280 19.00 13 14.85 14.07
      5 342~344 24.41 11 13.00 13.23
      6 390~392 28.00 9 12.89 12.97
      7 430~432 30.86 6 12.33 12.73
      8 486~488 34.87 11 12.64 13.02
      9 574~576 41.17 11 13.64 13.84
      10 646~648 46.25 11 11.27 12.46
      11 678~680 48.32 8 10.00 11.06
      下载: 导出CSV
    • [1] Abràmoff, M.D., Magalhães, P.J., Ram, S.J., 2004. Image Processing with Image. J. Biophotonics International, 11(7): 36-42.
      [2] Aldridge, D., Beer, C.J., Purdie, D.A., 2012. Calcification in the Planktonic Foraminifera Globigerina bulloides Linked to Phosphate Concentrations in Surface Waters of the North Atlantic Ocean. Biogeosciences, 9(5): 1725-1739. doi: 10.5194/bg-9-1725-2012
      [3] Anderson, D.M., Archer, D., 2002. Glacial-Interglacial Stability of Ocean pH Inferred from Foraminifer Dissolution Rates. Nature, 416(6876): 70-73. doi: 10.1038/416070a
      [4] Barker, S., Elderfield, H., 2002. Foraminiferal Calcification Response to Glacial-Interglacial Changes in Atmospheric CO2. Science, 297(5582): 833-836. doi: 10.1126/science.1072815
      [5] Beer, C.J., Schiebel, R., Wilson, P.A., 2010. Technical Note: On Methodologies for Determining the Size-Normalised Weight of Planktic Foraminifera. Biogeosciences, 7(7): 2193-2198. doi: 10.5194/bg-7-2193-2010
      [6] Bijma, J., Hönisch, B., Zeebe, R.E., 2002. Impact of the Ocean Carbonate Chemistry on Living Foraminiferal Shell Weight: Comment on "Carbonate Ion Concentration in Glacial-Age Deep Waters of the Caribbean Sea" by W.S. Broecker and E. Clark. Geochemistry, Geophysics, Geosystems, 3(11): 1064. doi: 10.1029/2002GC000388
      [7] Bijma, J., Spero, H.J., Lea, D.W., 1999. Reassessing Foraminiferal Stable Isotope Geochemistry: Impact of the Oceanic Carbonate System (Experimental Results). In: Fischer, G., Wefer, G., eds., Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer, Berlin, 489-512.
      [8] Broecker, W.S., Clark, E., 2001a. Glacial-to-Holocene Redistribution of Carbonate Ion in the Deep Sea. Science, 294(5549): 2152-2155. doi: 10.1126/science.1064171
      [9] Broecker, W.S., Clark, E., 2001b. An Evaluation of Lohmann's Foraminifera Weight Dissolution Index. Paleoceanography, 16(5): 531-534. doi: 10.1029/2000PA000600
      [10] Broecker, W.S., Clark, E., 2004. Shell Weights from the South Atlantic. Geochemistry, Geophysics, Geosystems, 5(3): Q03003. doi: 10.1029/2003GC000625
      [11] Chen, R.H., Meng, Y., Li, B.H., et al., 1999. Variations in the Lysocline of Carbonate in the Southern Okinawa Trough during the Last 20000 Years. Marine Geology & Quaternary Geology, 19(1): 25-30(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/hydzydsjdz199901004
      [12] Cooley, S.R., Kite-Powell, H.L., Doney, S.C., 2009. Ocean Acidification's Potential to Alter Global Marine Ecosystem Services. Oceanography, 22(4): 172-181. doi: 10.5670/oceanog.2009.106
      [13] Davis, C.V., Badger, M.P.S., Bown, P.R., et al., 2013. Calcification Response to Climate Change in the Pliocene. Biogeosciences Discussions, 10(4): 6839-6860. doi: 10.5194/bgd-10-6839-2013
      [14] de Moel, H., Ganssen, G.M., Peeter, F.J.C., et al., 2009. Planktic Foraminiferal Shell Thinning in the Arabian Sea due to Anthropogenic Ocean Acidification. Biogeosciences, 6(9): 1917-1925. doi: 10.5194/bg-6-1917-2009
      [15] Doney, S.C., Fabry, V.J., Feely, R.A., et al., 2009. Ocean Acidification: The Other CO2 Problem. Annu. Rev. Mar. Sci. , 1: 169-192. doi: 10.1146/annurev.marine.010908.163834
      [16] Fabry, V.J., Seibel, B.A., Feely, R.A., et al., 2008. Impacts of Ocean Acidification on Marine Fauna and Ecosystem Processes. ICES Journal of Marine Science, 65(3): 414-432. doi: 10.1093/icesjms/fsn048
      [17] Fehrenbacher, J., Martin, P., 2011. Western Equatorial Pacific Deep Water Carbonate Chemistry during the Last Glacial Maximum and Deglaciation: Using Planktic Foraminiferal Mg/Ca to Reconstruct Sea Surface Temperature and Seafloor Dissolution. Paleoceanography, 26(2): PA2225. doi: 10.1029/2010PA002035
      [18] Hönisch, B., Ridgwell, A., Schmidt, D.N., et al., 2012. The Geological Record of Ocean Acidification. Science, 335(6072): 1058-1063. doi: 10.1126/science.1208277
      [19] Hodell, D.A., Charles, C.D., Sierro, F.J., 2001. Late Pleistocene Evolution of the Ocean's Carbonate System. Earth and Planetary Science Letters, 192(2): 109-124. doi: 10.1016/S0012-821X(01)00430-7
      [20] Hull, P.M., Norris, R.D., Bralower, T.J., et al., 2011. A Role for Chance in Marine Rcovery from the End-Cretaceous Extinction. Nature Geoscience, 4(12): 856-860. doi: 10.1038/NGEO1302
      [21] Logan, C.A., 2010. A Review of Ocean Acidification and America's Response. Bioscience, 60(10): 819-828. doi: 10.1525/bio.2010.60.10.8
      [22] Lohmann, G.P., 1995. A Model for Variation in the Chemistry of Planktonic Foraminifera due to Secondary Calcification and Selective Dissolution. Paleoceanography, 10(3): 445-457. doi: 10.1029/95PA00059
      [23] Lombard, F., da Rocha, R.E., Bijma, J., et al., 2010. Effect of Carbonate Ion Concentration and Irradiance on Calcification in Planktonic Foraminifera. Biogeosciences, 7(1): 247-255. doi: 10.5194/bg-7-247-2010
      [24] Marchitto, T.M., Curry, W.B., Oppo, D.W., 2000. Zinc Concentrations in Benthic Foraminifera Reflect Seawater Chemistry. Paleoceanography, 15(3): 299-306. doi: 10.1029/1999PA000420
      [25] Marchitto, T.M., Lynch-Stieglitz, J., Hemming, S.R., 2005. Deep Pacific CaCO3 Compensation and Glacial-Interglacial Atmospheric CO2. Earth and Planetary Science Letters, 231(3-4): 317-336. doi: 10.1016/j.epsl.2004.12.024
      [26] Marshall, B.J., Thunell, R.C., Henehan, M.J., et al., 2013. Planktonic Foraminiferal Area Density as a Proxy for Carbonate Ion Concentration: A Calibration Study Using the Cariaco Basin Ocean Time Series. Paleoceanography, 28(2): 363-376. doi: 10.1002/palo.20034
      [27] Mekik, F., Raterink, L., 2008. Effects of Surface Ocean Conditions on Deep-Sea Calcite Dissolution Proxies in the Tropical Pacific. Paleoceanography, 23(1): PA1216. doi: 10.1029/2007PA001433
      [28] Mekik, F.A., Anderson, R.F., Loubere, P., et al., 2012. The Mystery of the Missing Deglacial Carbonate Preservation Maximum. Quaternary Science Reviews, 39: 60-72. doi: 10.1016/j.quascirev.2012.01.024
      [29] Moy, A.D., Howard, W.R., Bray, S.G., et al., 2009. Reduced Calcification in Modern Southern Ocean Planktonic Foraminifera. Nature Geoscience, 2(4): 276-280. doi: 10.1038/NGEO460
      [30] Naik, S.S., Naidu, P.D., 2007. Calcite Dissolution along a Transect in the Western Tropical Indian Ocean: A Multiproxy Approach. Geochemistry, Geophysics, Geosystems, 8(8): Q08009. doi: 10.1029/2007GC001615
      [31] Naik, S.S., Naidu, P.D., Govil, P., et al., 2010. Relationship between Weights of Planktonic Foraminifer Shell and Surface Water CO32- Concentration during the Holocene and Last Glacial Period. Marine Geology, 275(1-4): 278-282. doi: 10.1016/j.margeo.2010.05.004
      [32] Orr, J.C., Fabry, V.J., Aumont, O., et al., 2005. Anthropogenic Ocean Acidification over the Twenty-First Century and Its Impact on Calcifying Organisms. Nature, 437(7059): 681-686. doi: 10.1038/nature04095
      [33] Palmer, M.R., Pearson, P.N., 2003. A 23 000-Year Record of Surface Water pH and pCO2 in the Western Equatorial Pacific Ocean. Science, 300(5618): 480-482. doi: 10.1126/science.1080796
      [34] Petit, J.R., Jouzel, J., Raynaud, D., et al., 1999. Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antarctica. Nature, 399(6735): 429-436. doi: 10.1038/20859
      [35] Qiu, X.H., Li, T.G., Chang, F.M., et al., 2012. Turbidite Deposition Record and Its Mechanism since 150 ka BP in Western Philippine Sea. Marine Geology & Quaternary Geology, 32(4): 157-163(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201204026.htm
      [36] Regenberg, M., Schröder, J.F., Jonas, A.S., et al., 2013. Weight Loss and Elimination of Planktonic Foraminiferal Tests in a Dissolution Experiment. Journal of Foraminiferal Research, 43(4): 406-414. doi: 10.2113/gsjfr.43.4.406
      [37] Russell, A.D., Hönisch, B., Spero, H.J., et al., 2004. Effects of Seawater Carbonate Ion Concentration and Temperature on Shell U, Mg, and Sr in Cultured Planktonic Foraminifera. Geochimica et Cosmochimica Acta, 68(21): 4347-4361. doi: 10.1016/j.gca.2004.03.013
      [38] Spero, H.J., Bijma, J., Lea, D.W., et al., 1997. Effect of Seawater Carbonate Concentration on Foraminiferal Carbon and Oxygen Isotopes. Nature, 390(6659): 497-500. doi: 10.1038/37333
      [39] Solomon, S., Qin, D.H., Manning, M., et al., 2007. Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, New York.
      [40] Wang, P.X., Min, Q.B., Bian, Y.H., et al., 1986. Planktonic Foraminifera in the Continental Slope of the Northern South China Sea during the Last 130 000 Years and Their Paleo-Oceanographic Implications. Acta Geologica Sinica, 60(3): 215-225(in Chinese with English abstract). doi: 10.1111/j.1755-6724.1986.mp60003001.x/abstract
      [41] Xu, J., Huang, B.Q., Chen, R.H., et al., 2001. Distribution of Foraminifera in Surface Sediments of Northeastern South China Sea and Its Environmental Implications. Journal of Tropical Oceanography, 20(4): 6-13(in Chinese with English abstract). http://europepmc.org/abstract/cba/354100
      [42] Zeebe, R.E., 2012. History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification. Annual Review of Earth and Planetary Sciences, 40: 141-165. doi: 10.1146/annurev-earth-042711-105521
      [43] Zhang, L.L., Chen, M.H., Chen, Z., et al., 2010. Distribution of Calcium Carbonate and Its Controlling Factors in Surface Sediments of the South China Sea. Earth Science—Journal of China University of Geosciences, 35(6): 891-898(in Chinese with English abstract). doi: 10.3799/dqkx.2010.104
      [44] 陈荣华, 孟翊, 李保华, 等, 1999. 冲绳海槽南部两万年来碳酸盐溶跃面的变迁. 海洋地质与第四纪地质, 19(1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ901.003.htm
      [45] 仇晓华, 李铁刚, 常凤鸣, 等, 2012. 西菲律宾海15万年以来的浊流沉积及其成因. 海洋地质与第四纪地质, 32(4): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201204026.htm
      [46] 汪品先, 闵秋宝, 卞云华, 等, 1986.130 000年来南海北部陆坡的浮游有孔虫及其古海洋学意义. 地质学报, 60(3): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198603000.htm
      [47] 徐建, 黄宝琦, 陈荣华, 等, 2001. 南海东北部表层沉积中有孔虫的分布及其环境意义. 热带海洋学报, 20(4): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200104001.htm
      [48] 张兰兰, 陈木宏, 陈忠, 等, 2010. 南海表层沉积物中的碳酸钙含量分布及其影响因素. 地球科学——中国地质大学学报, 35(6): 891-898. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006002.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  3679
    • HTML全文浏览量:  129
    • PDF下载量:  443
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-10-15
    • 刊出日期:  2015-05-15

    目录

      /

      返回文章
      返回