Petrogenesis and Geological Implications of Late Paleozoic Intermediate-Basic Dyke Swarms in Western Junggar
-
摘要: 中基性岩墙群的形成及产出对研究区域大地构造背景和岩浆演化过程具有重要的地质意义.对西准噶尔地区的夏尔蒲中基性岩墙群和小西湖中基性岩墙群中样品(共18件)进行了岩石学、锆石U-Pb年代学、岩石地球化学和同位素地球化学等方面的研究.结果显示,夏尔蒲和小西湖岩墙群岩石类型以闪长玢岩为主,含少量辉绿岩.LA-ICP-MS锆石U-Pb年代学表明夏尔蒲岩墙群的侵位年龄为308.6±5.5 Ma.岩石均具有高Mg#(>40)、MgO(>3%)、Al2O3(>16%);全岩A/CNK值多在0.9左右,A/NK>2,属准铝质岩石;岩石整体属钙碱性玄武岩/安山岩系列.岩石具有较低的稀土总量(多在40×10-6~60×10-6),具轻稀土富集、重稀土亏损及Eu正异常等特征((La/Yb)N为3.03~11.32,δEu=1.00~1.20);明显富集大离子亲石元素K、Rb、Ba、Sr,亏损高场强元素Nb、Ta、Ti、Th,呈现了俯冲消减带岩石的地球化学特征.同时,岩石具有较高的Sr(均大于500 ×10-6)、较低的Y(大多小于10×10-6)和Yb(多在1×10-6左右)含量,较高的Sr/Y比值(36~95),大多数样品具有富镁埃达克质岩石的组成特征.岩石具有亏损的Sr-Nd同位素组成((87Sr/86Sr)i=0.703 58~0.703 80,εNd(t)=5.76~6.34).元素及同位素地球化学资料表明岩浆源区中既有亏损地幔组分的参与,又有俯冲消减作用的印迹.结合区域地质特征及前人研究成果,结果表明晚石炭世时西准噶尔地区已进入后碰撞阶段.由于俯冲残留大洋板片部分熔融,产生的熔体在与亏损地幔一定程度相互作用后,经单斜辉石的分离结晶而形成了夏尔蒲和小西湖岩墙群中富镁埃达克质岩石;而来源于亏损地幔的岩浆同样经单斜辉石的分离结晶后,形成了夏尔蒲岩墙群中的辉绿岩和小西湖岩墙群中的角闪闪长玢岩.大规模中基性岩墙群的产出则进一步表明晚石炭世时西准噶尔地区处于后碰撞的伸展拉张构造背景之下.Abstract: Understanding of the formation and occurrence of intermediate-basic dyke swarms can facilitate future studies on the magmatic evolution and tectonic settings. The Xiaerpu and Xiaoxihu intermediate-basic dyke swarms in West Junggar are principally composed of dioritic porphyrite, with minor diabase. LA-ICP-MS zircon U-Pb dating results indicate that the Xiaerpu dyke swarm is emplaced with age of 308.6±5.5 Ma. It is concluded that these dykes are the products of magmatism in Late Carboniferous based on the geological relationship between the dykes and host granitic rocks, and previous chronological studies. The dykes are characterized by high Mg#(> 40), high MgO(> 3%) and Al2O3(> 16%), belonging to calc-alkaline rocks and metaluminous rocks (with A/CNK approximately at 0.9 and A/NK > 2). The rocks have lower total REE (most are concentrated in 40×10-6-60 ×10-6), with enriched LREE and slightly positive Eu anomalies ((La/Yb)N=3.03-11.32, δEu=1.00-1.20). All samples are highly depleted in (Nb, Ta, Ti and Th), and enriched in (Sr, Ba, K and Rb). Meanwhile, the high contents of Sr (> 500×10-6), low contents of Y and Yb, high values of Sr/Y ratios (36.98-95.74), indicate the rocks (except sample XEP01, XEP02 and XXH06) are analogous to Mg-enriched adakitic rocks. Dykes have depleted Sr-Nd isotopic composition ((87Sr/86Sr)i=0.703 58-0.703 80, εNd(t)=5.76-6.34). Geochemical and isotopic compositions indicate that depleted-mantle components and materials related to subduction have prominent significance in the origin source of these dykes. Combined with the district geological evolution history and previous studies, we propose that West Junggar was under a post-collisional regime in Late Carboniferous. Due to the melting of remnant subducted oceanic slab, the slab melts interacted with the mantle materials to varying extent during ascent, and then accompanied fractional crystallization of clinopyroxene that generated the Mg-enriched adakitic rocks in Xiaerpu and Xiaoxihu intermediate-basic dyke swarms; and fractional crystallization of clinopyroxene of depleted-mantle materials metasomatised by slab melts can account for the formation of the diabase in Xiaerpu dyke swarm and the amphibolic diorite in Xiaoxihu dyke swarm. The emplacement of large-scale intermediate-basic dyke swarms further show that West Junggar was under a post-collisional extensional environment in Late Carboniferous.
-
图 1 中亚造山带大地构造纲要图(a),西准噶尔地区地质简图(b)及夏尔蒲和小西湖岩墙群地质简图(c)
图a, b改自Chen et al.(2010)
Fig. 1. Tectonic sketch of Central Asian orogenic belt (a), simplified geological sketch of western Junggar (b) and geological sketch of Xiaerpu and Xiaoxihu intermediate-basic dyke swarms (c)
图 5 Zr/TiO2-Nb/Y图解(a)和AFM图解(b)
图a据Winchester and Floyd(1977);图b据Irvine and Baragar(1971)
Fig. 5. Zr/TiO2-Nb/Y relationship (a) and AFM relationships (b)
图 7 夏尔蒲岩墙群球粒陨石标准化稀土配分模式(a),小西湖岩墙群球粒陨石标准化稀土配分模式(b),夏尔蒲岩墙群原始地幔标准化蛛网图(c)和小西湖岩墙群原始地幔标准化蛛网图(d)
球粒陨石及原始地幔标准化数据来自Sun and Mcdonough(1989)
Fig. 7. Chondrite-normalized REE abundances in the Xiaerpu dyke swarm (a), Chondrite-normalized REE abundances in the Xiaoxihu dyke swarm (b), Primitive mantle-normalized trace element abundances in the Xiaerpu dyke swarm (c) and Primitive mantle-normalized trace element abundances in the Xiaoxihu dyke swarm (d)
图 8 εNd(t)-(87Sr/86Sr)i图解(a)和Nd同位素演化趋势(b)
早-中元古代地壳数据来自于Hu et al.(2000),北疆早-中古生代地壳数据引自Chen and Arakawa(2005)
Fig. 8. Initial Sr isotopic compositions (87Sr/86Sr)i-εNd(t) relationship (a) and Nd isotopic evolution (b) of the intermediate-basic dykes and hosted granites in West Junggar
图 9 Nb-Nb/Ta图解(a)和Nb-Nb/La图解(b)
Fig. 9. Relationships of Nb-Nb/Ta (a) and Nb-Nb/La (b)
图 10 Mg#-(87Sr/86Sr)i图解(a),SiO2-(87Sr/86Sr)i图解(b)和Mg#-Nb/La图解(c)
Fig. 10. Relationships of Mg#-(87Sr/86Sr)i (a), SiO2-(87Sr/86Sr)i (b) and Mg#-Nb/La (c)
图 11 埃达克质岩成因图解
俯冲洋壳的数据来自Defant and Drummond(1990), Drummond et al.(1996)和Aguillon-Robles et al.(2001)资料;拆沉下地壳的数据来自Xu et al.(2002)和Wang et al.(2006)资料;加厚下地壳的数据来源于Petford and Atherton(1996)和Wang et al.(2006)资料;西藏埃达克质岩数据来源于Chung et al.(2003),Hou et al.(2004)和Wang et al.(2005)资料;安第斯火山岩带数据来自Stern and Kilian(1996)
Fig. 11. Geochemical data for adakitic rocks from different petrogenesis
表 1 XEP04锆石LA-ICP-MS U-Pb定年结果
Table 1. Zircon LA-ICP-MS U-Pb dating result for XEP04
分析点号 232Th
(10-6)238U
(10-6)Th/U 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ XEP04-01 71.25 115.46 0.62 0.421 73 0.036 46 0.052 41 0.000 68 357 26 329 4 XEP04-02 43.32 48.10 0.90 0.395 28 0.020 05 0.052 70 0.000 80 338 15 331 5 XEP04-03 1 352.92 2 171.99 0.62 0.412 61 0.005 97 0.055 48 0.000 32 351 4 348 2 XEP04-04* 183.93 234.67 0.78 0.330 98 0.037 63 0.047 34 0.000 78 290 29 298 5 XEP04-05 23.19 37.86 0.61 0.427 74 0.041 98 0.051 26 0.001 12 362 30 322 7 XEP04-06 41.44 88.56 0.47 0.407 52 0.027 57 0.051 32 0.000 78 347 20 323 5 XEP04-07* 47.25 59.84 0.79 0.368 99 0.032 75 0.050 44 0.001 12 319 24 317 7 XEP04-08* 94.45 137.27 0.69 0.368 19 0.015 24 0.049 00 0.000 67 318 11 308 4 XEP04-09* 141.60 517.26 0.27 0.370 90 0.009 36 0.050 14 0.000 61 320 7 315 4 XEP04-10* 32.92 69.10 0.48 0.390 98 0.029 49 0.047 82 0.000 95 335 22 301 6 XEP04-11* 32.23 50.68 0.64 0.375 10 0.026 61 0.048 43 0.001 00 323 20 305 6 XEP04-12* 241.33 668.75 0.36 0.374 16 0.007 10 0.050 78 0.000 75 323 5 319 5 XEP04-13* 45.75 59.25 0.77 0.379 82 0.016 23 0.049 45 0.000 62 327 12 311 4 XEP04-14 212.03 226.43 0.94 0.518 31 0.019 17 0.052 25 0.001 06 424 13 328 6 XEP04-15* 106.12 173.01 0.61 0.363 19 0.039 22 0.046 86 0.001 02 315 29 295 6 XEP04-16* 128.94 244.85 0.53 0.379 18 0.033 44 0.049 46 0.001 49 326 25 311 9 XEP04-17 71.87 100.11 0.72 0.655 23 0.358 96 0.050 84 0.003 47 512 220 320 21 XEP04-18 89.00 180.09 0.49 0.400 68 0.063 60 0.063 11 0.001 08 342 46 395 7 XEP04-19 54.85 651.35 0.08 0.355 96 0.061 59 0.056 07 0.001 33 309 46 352 8 XEP04-20 186.18 187.84 0.99 0.452 47 0.067 03 0.071 27 0.001 43 379 47 444 9 注:*所选取的代表岩墙结晶年龄的锆石U-Pb年龄. 表 2 夏尔蒲和小西湖岩墙群地球化学分析结果
Table 2. Chemical analysis for Xiaerpu and Xiaoxihu intermediate-basic dyke swarms
样品 闪长(玢)岩 辉绿岩 闪长(玢)岩 辉绿岩 闪长(玢)岩 XXH01 XXH02 XXH03 XXH04 XXH05 XXH06 XXH07 XXH08 XXH09 XXH10 XEP01 XEP02 XEP03 XEP04 XEP05 XEP06 XEP07 XEP08 SiO2 60.49 58.10 57.32 57.50 55.34 52.82 55.67 53.64 57.02 61.99 50.87 49.24 57.75 58.86 57.80 56.71 58.72 57.85 TiO2 0.63 0.58 0.64 0.61 0.82 0.91 0.73 0.96 0.73 0.52 0.84 1.42 0.75 0.61 0.60 0.76 0.56 0.64 Al2O3 16.86 16.55 17.07 17.26 16.85 16.25 17.57 15.66 16.60 17.39 16.29 16.83 16.16 17.05 16.91 17.38 17.21 18.51 Fe2O3 1.98 0.64 1.90 1.56 2.07 2.74 1.95 2.02 2.40 1.72 5.61 2.76 2.63 1.38 1.14 1.27 0.92 2.35 FeO 3.10 4.10 3.80 4.22 4.18 4.72 4.32 4.35 3.67 2.38 1.82 6.70 3.87 3.77 4.18 4.55 4.18 3.47 MnO 0.09 0.07 0.08 0.09 0.09 0.11 0.09 0.10 0.10 0.07 0.18 0.16 0.11 0.11 0.15 0.11 0.12 0.09 MgO 2.90 3.92 3.50 3.90 4.21 6.64 3.76 5.27 4.41 1.95 4.99 6.17 5.47 4.05 4.04 4.43 3.84 3.33 CaO 5.66 5.31 4.95 7.40 6.12 8.00 5.48 6.22 6.50 4.87 7.30 7.59 6.05 6.45 6.17 6.49 6.17 6.41 Na2O 3.91 4.15 4.16 3.29 3.89 3.18 3.85 3.73 3.68 3.90 3.37 3.65 3.67 4.12 3.54 3.91 3.66 4.22 K2O 0.83 1.03 2.03 0.47 2.13 0.83 2.17 1.42 1.36 2.78 1.19 1.43 0.55 1.12 2.12 1.41 1.34 0.83 P2O5 0.14 0.13 0.13 0.11 0.17 0.21 0.14 0.22 0.17 0.12 0.31 0.23 0.13 0.14 0.11 0.16 0.10 0.14 H2O+ 1.93 2.91 2.74 2.23 2.34 3.29 2.97 3.28 2.64 2.03 3.69 3.10 2.39 1.68 2.04 2.22 2.16 1.82 CO2 1.25 2.31 1.45 1.15 1.55 0.10 1.05 2.91 0.50 0.04 3.31 0.50 0.28 0.45 1.00 0.40 0.80 0.12 Total 99.77 99.80 99.77 99.79 99.76 99.80 99.75 99.78 99.78 99.76 99.77 99.78 99.81 99.79 99.80 99.80 99.78 99.78 FeOT 4.88 4.68 5.51 5.62 6.04 7.19 6.07 6.17 5.83 3.93 6.87 9.18 6.24 5.01 5.21 5.69 5.01 5.58 Alk 4.74 5.18 6.19 3.76 6.02 4.01 6.02 5.15 5.04 6.68 4.56 5.08 4.22 5.24 5.66 5.32 5.00 5.05 Mg# 52 60 53 56 56 62 53 61 58 47 57 55 61 59 58 58 58 52 A/CNK 0.96 0.94 0.95 0.89 0.85 0.78 0.94 0.82 0.86 0.95 0.81 0.79 0.92 0.86 0.87 0.88 0.92 0.95 A/NK 2.30 2.08 1.89 2.91 1.93 2.65 2.02 2.04 2.20 1.84 2.38 2.23 2.44 2.13 2.08 2.18 2.30 2.36 La 6.08 5.47 5.83 6.21 7.95 13.4 5.40 8.70 8.01 13.8 22.9 8.21 5.64 5.58 6.85 5.89 6.11 5.27 Ce 13.75 12.74 13.33 13.43 18.14 29.90 12.58 19.88 18.39 30.89 51.98 20.18 13.22 12.59 15.21 17.36 13.27 12.31 Pr 1.93 1.83 1.85 1.81 2.61 4.07 1.86 2.74 2.53 3.09 7.15 2.96 1.88 1.91 1.95 1.96 1.73 1.76 Nd 8.38 7.79 8.17 7.61 11.50 17.60 8.42 11.9 10.9 12.1 31.4 13.6 8.67 9.32 8.13 8.60 7.23 7.77 Sm 2.04 1.97 2.11 1.87 2.61 3.90 2.12 2.85 2.58 2.32 6.56 3.51 2.51 1.98 1.98 2.10 1.77 1.95 Eu 0.68 0.66 0.73 0.65 0.87 1.22 0.79 0.98 0.87 0.83 1.93 1.30 0.85 0.71 0.69 0.79 0.61 0.71 Gd 1.70 1.58 1.92 1.68 2.41 3.19 1.86 2.71 2.25 1.97 4.90 3.63 2.54 1.76 1.70 1.84 1.50 1.75 Tb 0.26 0.25 0.28 0.27 0.37 0.47 0.30 0.40 0.34 0.31 0.60 0.60 0.41 0.28 0.27 0.31 0.24 0.25 Dy 1.56 1.31 1.68 1.58 2.20 2.57 1.74 2.31 2.04 1.72 3.04 3.79 2.34 1.61 1.56 1.67 1.41 1.51 Ho 0.31 0.27 0.33 0.31 0.44 0.46 0.34 0.44 0.41 0.33 0.51 0.75 0.44 0.30 0.32 0.33 0.29 0.28 Er 0.82 0.73 0.90 0.88 1.16 1.34 0.96 1.20 1.13 0.95 1.38 2.15 1.23 0.94 0.88 0.92 0.78 0.73 Tm 0.11 0.10 0.12 0.12 0.17 0.18 0.14 0.16 0.15 0.14 0.19 0.30 0.18 0.14 0.13 0.12 0.11 0.11 Yb 0.79 0.69 0.80 0.80 1.06 1.08 0.83 1.06 1.04 0.90 1.16 1.95 1.03 0.82 0.76 0.81 0.72 0.63 Lu 0.12 0.11 0.13 0.12 0.17 0.18 0.12 0.16 0.16 0.13 0.17 0.28 0.17 0.13 0.11 0.12 0.11 0.10 Y 8.12 7.31 8.86 8.05 10.70 12.60 9.18 11.50 10.70 9.09 13.50 19.60 11.90 8.50 8.62 8.51 7.86 7.39 δEu 1.09 1.11 1.08 1.09 1.04 1.03 1.18 1.06 1.08 1.15 4.78 1.50 1.62 2.22 2.42 2.51 2.36 2.34 (La/Sm)N 1.92 1.79 1.78 2.14 1.97 2.22 1.64 1.97 2.00 3.85 2.25 1.51 1.45 1.82 2.23 1.81 2.22 1.74 (La/Yb)N 5.25 5.48 4.77 5.64 5.10 8.19 4.78 5.75 5.24 11.32 14.09 3.03 3.91 4.87 6.50 5.24 6.06 6.02 Zr 52.49 61.02 51.92 50.48 65.21 85.86 54.38 88.86 75.62 100.90 84.35 105.90 55.91 55.99 47.21 53.05 47.28 48.30 Nb 1.16 1.48 1.11 1.48 1.98 2.63 1.16 3.53 2.02 2.06 2.13 2.58 1.59 1.08 1.61 1.61 1.49 1.08 Ba 452.10 292.90 596.20 270.90 625.60 325.40 859.30 442.60 443.30 932.00 323.90 370.10 255.30 346.70 380.10 306.60 347.10 411.30 Hf 1.86 1.93 1.69 1.77 2.11 2.57 1.79 2.51 2.27 3.21 2.52 2.89 2.04 1.88 1.53 1.67 1.62 1.65 Ta 0.09 0.19 0.09 0.21 0.20 0.15 0.09 0.17 0.14 0.22 0.17 0.21 0.12 0.69 0.14 0.13 0.11 0.06 Li 37.54 30.77 30.31 19.86 17.81 23.93 27.19 27.21 40.39 23.26 37.20 21.63 18.79 14.48 23.13 17.05 16.50 17.41 Sc 14.47 15.64 17.02 19.19 18.88 24.69 17.28 17.65 17.31 10.91 20.82 25.98 18.19 17.01 18.00 18.42 17.25 13.42 Cr 19.41 107.50 22.93 48.75 61.59 344.70 28.61 179.20 107.00 10.76 88.21 134.40 210.20 55.04 55.86 114.70 53.59 13.41 Co 20.20 21.82 24.18 26.11 26.61 40.18 26.20 31.76 26.25 12.50 29.30 40.61 27.71 22.72 24.21 26.68 21.45 22.43 Ni 30.52 73.61 37.83 57.41 51.16 152.20 36.50 109.20 81.27 12.36 76.19 105.60 101.20 57.05 57.40 72.31 58.55 33.07 Rb 15.35 20.76 39.20 13.35 40.52 17.94 61.88 37.09 39.73 82.60 45.36 43.70 12.68 36.15 65.07 39.26 41.50 12.93 Cs 0.86 0.54 1.05 0.80 0.84 0.39 1.53 1.26 1.54 1.93 1.13 1.90 0.91 1.28 3.28 1.15 1.02 1.24 Pb 15.17 7.16 10.06 8.24 12.55 7.84 8.70 10.90 9.85 11.29 7.34 6.78 6.99 5.88 4.73 2.79 5.61 4.09 Th 1.36 0.81 1.68 1.95 1.06 2.31 0.92 1.40 1.41 4.63 3.19 1.78 1.27 1.45 1.78 1.43 1.61 0.90 U 0.75 0.49 0.69 0.78 0.51 0.95 1.00 0.56 0.66 1.86 0.89 0.57 0.38 0.55 0.86 0.34 0.77 0.44 Sr 777.60 621.50 644.50 593.40 721.60 592.20 664.40 631.80 708.20 519.40 790.50 726.30 521.90 745.60 533.70 651.50 603.80 676.10 V 131.40 125.40 151.50 150.60 168.80 168.80 158.80 144.70 143.70 93.81 171.40 208.30 132.80 140.80 150.50 149.20 143.30 136.30 Sr/Y 95.74 85.06 72.72 73.70 67.57 46.93 72.41 55.18 66.50 57.16 58.43 36.98 44.04 87.74 61.89 76.54 76.87 91.46 Nb/Ta 13.44 8.02 13.07 6.98 10.02 17.10 13.60 20.99 14.04 9.21 12.93 12.28 12.85 1.56 11.49 12.89 13.81 18.00 Zr/Hf 28.25 31.60 30.67 28.46 30.92 33.41 30.41 35.40 33.34 31.45 33.54 36.69 27.45 29.81 30.92 31.86 29.19 29.25 注:主量元素单位:%;微量元素单位:10-6;稀土元素单位:10-6. 表 3 岩墙全岩Sr-Nd同位素组成
Table 3. Whole-rock Sr-Nd isotope compositions for intermediate-basic dykes
样号 XEP01 XEP03 XXH06 87Rb/86Sr 0.166 0 0.070 3 0.087 6 87Sr/86Sr 0.704 525 0.704 101 0.703 966 147Sm/144Nd 0.126 3 0.175 1 0.134 3 143Nd/144Nd 0.512 791 0.512 896 0.512 837 εSr(t) -4.90 -4.96 -7.96 (87Sr/86Sr)i 0.703 80 0.703 79 0.703 58 εNd(0) 2.98 5.03 3.88 εNd(t) 5.76 5.89 6.34 (143Nd/144Nd)i 0.512 536 0.512 543 0.512 566 fSm/Nd -0.36 -0.11 -0.32 TDM(Ga) 0.63 1.00 0.60 -
[1] An, F., Zhu, Y.F., 2009. SHRIMP U-Pb Zircon Ages of Tuff in Baogutu Formation and Their Geological Significances. Acta Petrologica Sinica, 25(6): 1437-1445 (in Chinese with English abstract). http://www.oalib.com/paper/1473241 [2] Aguillon-Robles, A., Calmus, T., Benoit, M., et al., 2001. Late Miocene Adakites and Nb-Enriched Basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise Subduction below Southern Baja California? Geology, 29(6): 531-534. doi: 10.1130/0091-7613(2001)029<0531:LMAANE>2.0.CO;2 [3] Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. doi: 10.1007/s004100050467 [4] Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. doi: 10.1016/j.gca.2004.09.019 [5] Chen, B., Jahn, B.M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. doi: 10.1016/S1367-9120(03)00118-4 [6] Chen, B., Zhu, Y.F., 2011. Petrology, Geochemistry and Zircon U-Pb Chronology of Gabbro in Darbut Ophiolitic Mélange, Xinjiang. Acta Petrologica Sinica, 27(6): 1746-1758 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201106014.htm [7] Chen, J.F., Han, B.F., Ji, J.Q., et al., 2010. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China. Lithos, 115(1-4): 137-152. doi: 10.1016/j.lithos.2009.11.014 [8] Chen, S., Guo, Z.J., 2010. Time Constraints, Tectonic Setting of Dalabute Ophiolitic Complex and Its Significance for Late Paleozoic Tectonic Evolution in West Junggar. Acta Petrologica Sinica, 26(8): 2336-2344 (in Chinese with English abstract). http://www.researchgate.net/publication/281549166_Time_constraints_tectonic_setting_of_Dalabute_ophiolitic_complex_and_its_significance_for_Late_Paleozoic_tectonic_evolution_in_West_Junggar [9] Chen, J.F., Han, B.F., Zhang, L., 2010. Geochemistry, Sr-Nd Isotopes and Tectonic Implications of Two Generations of Late Paleozoic Plutons in Northern West Junggar, Northwest China. Acta Petrologica Sinica, 26(8): 2317-2335 (in Chinese with English abstract). http://www.oalib.com/paper/1474907 [10] Chung, S.L., Liu, D.Y., Ji, J.Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31: 1021-1024. doi: 10.1130/G19796.1 [11] Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53: 469-500. doi: 10.2113/0530469 [12] Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. doi: 10.1038/347662a0 [13] Defant, M.J., Xu, J.F., Kepezhinskas, P., et al., 2002. Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 18(2): 129-142. doi: 10.3321/j.issn:1000-0569.2002.02.001 [14] Desonie, D.L., 1992. Geologic and Geochemical Reconnaissance of Isla San Esteban: Post-Subduction Orogenic Volcanism in the Gulf of California. Journal of Volcanology and Geothermal Research, 52(1-3): 123-140. doi: 10.1016/0377-0237(92)90136-2 [15] Drummond, M.S., Defant, M.J., Kepezhnskas, P.K., 1996. Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magamas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2): 205-215. doi: 10.1017/S0263593300006611 [16] French, J.E., Heaman, L.M., 2010. Precise U-Pb Dating of Paleoproterozoic Mafic Dyke Swarms of the Dharwar Craton, India: Implications for the Existence of the Neoarchean Supercraton Sclavia. Precambrian Research, 183(3): 416-441. doi: 10.1016/j.precamres.2010.05.003 [17] Gao, R., Xiao, L., Wang, G.C., et al., 2013. Paleozoic Magmatism and Tectonic Setting in West Junggar. Acta Petrologica Sinica, 29(10): 3413-3434 (in Chinese with English abstract). http://www.researchgate.net/publication/285747232_Paleozoic_Magmatism_and_Tectonic_Setting_in_West_Junggar [18] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. doi: 10.1038/nature03162 [19] Gao, Y.F., Hou, Z.Q., Kamber, B.S., et al., 2007. Adakite-Like Porphyries from the Southern Tibetan Continental Collision Zones: Evidence for Slab Melt Metasomatism. Contributions to Mineralogy and Petrology, 153(1): 105-120. doi: 10.1007/s00410-006-0137-9 [20] Geng, H.Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction? Chemical Geology, 266(3-4): 364-389. doi: 10.1016/j.chemgeo.2009.07.001 [21] Green, T.H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. doi: 10.1016/0009-2541(94)00145-X [22] Guo, L.S., Liu, Y.L., Wang, Z.H., et al., 2010. The Zircon U-Pb LA-ICP-MS Geochronology of Volcanic Rocks in Baogutu Areas, Western Junggar. Acta Petrologica Sinica, 26(2): 471-477 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201002013.htm [23] Halls, H.C., 1982. The Importance and Potential of Mafic Dyke Swarms in Studies of Geodynamic Processes. Geoscience Canada, 9(3): 145-154. [24] Han, B.F., Guo, Z.J., He, G.Q., 2010. Timing of Major Suture Zones in North Xinjiang, China: Constrains from Stitching Plutons. Acta Petrologica Sinica, 26(8): 2233-2246 (in Chinese with English abstract). http://www.oalib.com/paper/1476190 [25] Han, B.F., Ji, J.Q., Song. B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China(Part Ⅰ): Timing of Post-Collisional Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract). http://www.oalib.com/paper/1472627 [26] He, G.Q., Liu, J.B., Zhang, Y.Q., et al., 2007. Keramay Ophiolitic Mélange Formed during Early Paleozoic in Western Junggar Basin. Acta Petrologica Sinica, 23(7): 1573-1576 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200707001.htm [27] He, J.B., Chen, B., 2011. Petrogenesis of Karamay Plutons in the West Junggar: Constraints from Geochronology, Petrology and Geochemistry. Earth Science Frontiers, 18 (2): 191-211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201102023.htm [28] He, Q., Xiao, L., Balta, B., et al., 2010. Variety and Complexity of the Late-Permian Emeishan Basalts: Reappraisal of Plume-Lithosphere Interaction Processes. Lithos, 119(1-2): 91-107. doi: 10.1016/j.lithos.2010.07.020 [29] Hergt, J.M., Chappell, B.W., McCulloch, M.T., et al., 1989. Geochemical and Isotopic Constraints on the Origin of the Jurassic Dolorites of Tasmania. Journal of Petrology, 30(4): 841-883. doi: 10.1093/petrology/30.4.841 [30] Hole, M.J., Saunders, A.D., Marriner, G.F., et al., 1984. Subduction of Pelagic Sediments: Implications for the Origin of Ce-Anomalous Basalts from the Mariana Islands. Journal of the Geological Society, 141(3): 453-472. doi: 10.1144/gsjgs.141.3.0453 [31] Hoskin, P.W.O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. doi: 10.2113/0530027 [32] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004. Origin of Adakitc Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X [33] Hu, A.Q., Jahn, B.M., Zhang, G.X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part Ⅰ. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1-2): 15-51. doi: 10.1016/S0040-1951(00)00176-1 [34] Irvine, T, N., Baragar, W.R.A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. doi: 10.1139/e71-055 [35] Jiang, Y.H., Jiang, S.Y., Ling, H.F., et al., 2006. Low-Degree Melting of a Metasomatized Lithospheric Mantle for the Origin of Cenozoic Yulong Monzogranite-Porphyry, East Tibet: Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints. Earth and Planetary Science Letters, 241(3-4): 617-633. doi: 10.1016/j.epsl.2005.11.023 [36] Jin, H.J., Li, Y.C., 1999. Carboniferous Biogenic Sedimentary Structure on the Northwestern Margin of Junggar Basin. Chinese Science Bulletin, 44(4): 368-372. doi: 10.1007/BF02885494 [37] Kalfoun, F., Ionov, D., Merlet, C., 2002. HFSE Residence and Nb/Ta Ratios in Metasomatised, Rutile-Bearing Mantle Peridotites. Earth and Planetary Science Letters, 199(1-2): 49-65. doi: 10.1016/S0012-821X(02)00555-1 [38] Kang, L, Li, Y.J., Zhang, B., et al., 2009. Petrographic Evidence for Magma Mixing of Xiaerpu Granite in West Junggar, Xinjiang. Acta Petrologica et Mineralogica, 28(5): 423-432 (in Chinese with English abstract). http://www.researchgate.net/publication/281606218_Petrographic_evidence_for_magma_mixing_of_Xiaerpu_granite_in_West_Junggar_Xinjiang [39] Khan, T., Murata, M., Karim, T., et al., 2007. A Cretaceous Dike Swarm Provides Evidence of a Spreading Axis in the Back-Arc Basin of the Kohistan Paleo-Island Arc, Northwestern Himalaya, Pakistan. Journal of Asian Earth Sciences, 29(2-3): 350-360. doi: 10.1016/j.jseaes.2006.04.001 [40] Lei, M., Zhao, Z.D., Hou, Q.Y., et al., 2008. Geochemical and Sr-Nd-Pb Isotopic Characteristics of the Dalabute Ophilite, Xinjiang: Comparison between the Paleo-Asian Ocean and the Tethyan Mantle Domains. Acta Petrologica Sinica, 24(4): 661-672 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252027335.html [41] Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2008. Origin of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Eastern Yangtze Craton, Eastern China: Geochronological, Geochemical, and Sr-Nd-Hf Isotopic Constraints. Mineralium Deposita, 43(3): 315-336. doi: 10.1007/s00126-007-0161-3 [42] Li, J.Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224. doi: 10.1016/j.jseaes.2005.09.001 [43] Li, X.Z., Han, B.F., Ji, J.Q., et al., 2004. Geology, Geochemistry and K-Ar Ages of the Karamay Basic-Intermediate Dyke Swarm from Xinjiang, China. Geochimica, 33(6): 574-584 (in Chinese with English abstract). http://www.researchgate.net/publication/313174990_Geology_geochemistry_and_K-Ar_ages_of_the_Karamay_basic-intermediate_dyke_swarm_from_Xinjiang_China [44] Li, X.Z., Han, B.F., Li, Z.H., et al., 2005. Mechanism of the Karamay Basic-Intermediate Dyke Swarm from Xinjiang and Tectonic Implications. Geological Review, 51(5): 517-522 (in Chinese with English abstract). http://www.researchgate.net/publication/293144157_Mechanism_of_the_Karamay_basic-intermediate_dyke_swarm_from_Xinjiang_and_tectonic_implications [45] Li, Y.J., Li, G.Y., Kang, L., et al., 2013. Evidence of Zircon U-Pb Geochronology for Magma Mixing of Xiaerpu Granite in West Junggar. Acta Petrologica Sinica, 29(9): 3023-3030 (in Chinese with English abstract). [46] Liu, X.J., Xu, J, F., Wang, S.Q., et al., 2009. Geochemistry and Dating of E-MORB Type Mafic Rocks from Dalabute Ophiolite in West Junggar, Xinjiang and Geological Implications. Acta Petrologica Sinica, 25(6): 1373-1389 (in Chinese with English abstract). http://www.oalib.com/paper/1472089 [47] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [48] Luo, Z.H., Lu, X.X., Wang, B.Z., et al., 2008. Post-Orogenic Dike Complexes and Implications for Metallogenesis. Earth Science Frontiers, 15(4): 1-12 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60034-2 [49] Ma, C., Xiao, W.J., Windley, B.F., et al., 2012. Tracing a Subducted Ridge-Transform System in a Late Carboniferous Accretionary Prism of the Southern Altaids: Orthogonal Sanukitoid Dyke Swarms in Western Junggar, NW China. Lithos, 140-141: 152-165. doi: 10.1016/j.lithos.2012.02.005 [50] Martin, H., 1987. Petrogenesis of Archean Trondhjemites, Tonalites, and Granodiorites from Eastern Finland: Major and Trace Element Geochemistry. Journal of Petrology, 28(5): 921-953. doi: 10.1093/petrology/28.5.921 [51] Martin, H., Smithies, R.H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trodhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. doi: 10.1016/j.lithos.2004.04.048 [52] Mir, A.R., Alvi, S.H., Balaram, V., 2010. Geochemistry of Mafic Dikes in the Singhbhum Orissa Craton: Implications for Subduction-Related Metasomatism of the Mantle beneath the Eastern Indian Craton. International Geology Review, 52(1): 79-94. doi: 10.1080/00206810903211948 [53] Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915-918. doi: 10.1130/0091-7613(2002)0302.0.CO;2 [54] Pepiper, G., Piper, D.J.W., 1994. Miocene Magnesian Andesites and Dacites, Evia, Greece: Adakites Associated with Subducting Slab Detachment and Extension. Lithos, 31(3-4): 125-140. doi: 10.1016/0024-4937(94)90004-3 [55] Perfit, M.R., Gust, D.A., Bench, A.E., et al., 1980. Chemical Characteristics of Island-Arc Basalts: Implications for Mantle Sources. Chemical Geology, 30: 227-256. doi: 10.1016/0009-2541(80)90107-2 [56] Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491 [57] Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891 [58] Rodríguez, C., Sellés, D., Dungan, M., et al., 2007. Adakitic Dacites Formed by Intracrustal Crystal Fractionation of Water-Rich Parent Magmas at Nevado de Longaví Volcano(36.2°S; Andean Southern Volcanic Zone, Central Chile). Journal of Petrology, 48(11): 2033-2061. doi: 10.1093/petrology/egm049 [59] Rudnick, R.L., Barth, M., Horn, I., et al., 2000. Rutile-Bearing Refractory Eclogites: Missing Link between Continents and Depleted Mantle. Science, 287(5451): 278 -281. doi: 10.1126/science.287.5451.278 [60] Sengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. doi: 10.1038/364299a0 [61] Stern, C.R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contribution to Mineralogy and Petrology, 123(3): 263-281. doi: 10.1007/s004100050155 [62] Su, Y.P., Tang, H.F., Hou, G.S., et al., 2006. Geochemistry of Aluminous A-Type Granites along Darabut Tectonic Belt in West Junggar, Xinjiang. Geochimica, 35(1): 55-67 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200601006.htm [63] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [64] Tang, G.J., Wang, Q., Wyman, D.A., et al., 2010. Ridge Subduction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China). Chemical Geology, 277(3-4): 281-300. doi: 10.1016/j.chemgeo.2010.08.012 [65] Tang, G.J., Wang, Q., Wyman, D.A., et al., 2012. Recycling Oceanic Crust for Continental Crustal Growth: Sr-Nd-Hf Isotope Evidence from Granitoids in the Western Junggar Region, NW China. Lithos, 128-131: 73-83. doi: 10.1016/.lithos.2011.11.003 [66] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [67] Tong, Y., Wang, T., Hong, D.W., et al., 2010. Spatial and Temporal Distribution of the Carboniferous-Permian Granitoids in Northern Xinjiang and Its Adjacent Areas, and Its Tectonic Significance. Acta Petrologica et Mineralogica, 29(6): 619-641 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=35849233 [68] Wang, Q., McDermott, F., Xu, J.F., et al., 2005. Cenozoic K-Rich Adakitic Vocanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465-468. doi: 10.1130/G21522.1 [69] Wang, Q., Wyman, D.A., Zhao, Z.H., et al., 2007. Petrogenesis of Carboniferous Adakites and Nb-Enriched Arc Basalts in the Alataw Area, Northern Tianshan Range (Western China): Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt. Chemical Geology, 236(1-2): 42-64. doi: 10.1016/j.chemgeo.2006.08.013 [70] Wang, Q., Xu, J.F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extension Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. doi: 10.1093/petrology/egi070 [71] Wang, Q., Xu, J.F., Zhao, Z.H., et al., 2008. Tectonic Setting and Associated Rock Suites of Adakitic Rocks. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 344-350 (in Chinese with English abstract). http://www.researchgate.net/publication/287538563_Tectonic_setting_and_associated_rock_suites_of_adakitic_rocks [72] Wang, R., Zhu, Y.F., 2007. Geology of the Baobei Gold Deposit in Western Junggar and Zircon SHRIMP Age of Its Wall-Rocks, Western Junggar (Xinjiang, NW China). Geological Journal of China Universities, 13(3): 590-602 (in Chinese with English abstract). http://www.researchgate.net/publication/267334888_Geology_of_Baobei_gold_deposit_in_western_Junggar_and_zircon_SHRIMP_age_of_its_wall-rock_Western_Junggar_Xinjiang_NW_China [73] Weaver, B.L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2-4): 381-397. doi: 10.1016/0012-821X(91)90217-6 [74] Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2 [75] Windley, B.F., Alexeiev, D., Xiao, W.J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. doi: 10.1144/0016-76492006-022 [76] Windley, B.F., Kröner, A., Guo, J.H., et al., 2002. Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China: New Zircon Age Data and Tectonic Evolution. The Journal of Geology, 110(6): 719-737. doi: 10.1086/342866 [77] Xiao, L., Clemens, J.D., 2007. Origin of Potassic (C-Type) Adakite Magmas: Experimental and Field Constraints. Lithos, 95(3-4): 399-414. doi: 10.1016/j.lithos.2006.09.002 [78] Xiao, W.J., Kusky, T., 2009. Geodynamic Processes and Metallogenesis of the Central Asian and Related Orogenic Belts: Introduction. Gondwana Research, 16(2): 167-169. doi: 10.1016/j.gr.2009.05.001 [79] Xiao, W.J., Zhang, L.C., Qin, K.Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan(China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. doi: 10.2475/ajs.304.4.370 [80] Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111-1114. doi: 10.1130/0091-7613(2002)0302.0.CO;2 [81] Xu, Q.Q., Ji, J.Q., Han, B.F., et al., 2008. Petrology, Geochemistry and Geochronology of the Intermediate to Mafic Dykes in Northern Xinjiang since Late Paleozoic. Acta Petrologica Sinica, 24(5): 977-996 (in Chinese with Englishi abstract). http://www.oalib.com/paper/1473499 [82] Xu, Z., Han, B.F., Ren, R., et al., 2012. Ultramafic-Mafic Mélange, Island Arc and Post-Collisional Intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic Intra-Oceanic Subduction-Accretion Process. Lithos, 132-133: 141-161. doi: 10.1016/j.lithos.2011.11.016 [83] Yang, G.X., Li, Y.J., Gu, P.Y., et al., 2012a. Geochronological and Geochemical Study of the Darbut Ophiolitic Complex in the West Junggar (NW China): Implications for Petrogenesis and Tectonic Evolution. Gondwana Research, 21(4): 1037-1049. doi: 10.1016/j.gr.2011.07.09 [84] Yang, G.X., Li, Y.J., Santosh, M., et al., 2012b. A Neoproterozoic Seamount in the Paleoasian Ocean: Evidence from Zircon U-Pb Geochronology and Geochemistry of the Mayile Ophilitic Mélange in West Junggar, NW China. Lithos, 140-141: 53-56. doi: 10.1016/j.lithos.2012.01.026 [85] Yang, W., Li, S., 2008. Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in Western Liaoning: Implications for Lithospheric Thinning of the North China Craton. Lithos, 102(1-2): 88-117. doi: 10.1016/j.lithos.2007.09.018 [86] Yin, J.Y., Yuan, C., Sun, M., et al., 2010. Late Carboniferous High-Mg Dioritic Dikes in Western Junggar, NW China: Geochemical Features, Petrogenesis and Tectonic Implications. Gondwana Research, 17(1): 145-152. doi: 10.1016/j.gr.2009.05.011 [87] Zhang, H.W., Kang, L., Zhao, C.H., et al., 2011. Geochemical Evidence of Magma Mingling of Xiaerpu Granite in West Junggar, Xinjiang. Northwestern Geology, 44(2): 41-50 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI201102007.htm [88] Zhang, Q., Qian, Q., Zhai, M.G., et al., 2005. Geochemistry, Petrogenesis and Geodynamic Implications of Sanukite. Acta Petrologica et Mineralogica, 24(2): 117-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200502004.htm [89] Zheng, J.P., Sun, M., Zhao, G.C., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Late Paleozoic Volcanic Rocks Beneath the Junggar Basin, NW China: Implications for the Formation and Evolution of the Basin Basement. Journal of Asian Earth Sciences, 29(5-6): 778-794. doi: 10.1016/j.jseaes.2006.05.004 [90] Zhou, J., Ji, J.Q., Han, B.F., et al., 2008. 40Ar/39Ar Geochronology of Mafic Dykes in North Xinjiang. Acta Petrologica Sinica, 24 (5): 997-1010 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252027464.html [91] Zhou, T.F., Yuan, F., Fan, Y., et al., 2008. Granites in the Sawuer Region of the West Junggar, Xinjiang Province, China: Geochronological and Geochemical Characteristics and Their Geodynamic Significance. Lithos, 106(3-4): 191-206. doi: 10.1016/j.lithos.2008.06.014 [92] Zhou, T.F., Yuan, F., Tan, L.G., et al., 2006. Geodynamic Significance of the A-Type Granites in the Sawuer Region in West Junggar, Xinjiang: Rock Geochemistry and SHRIMP Zircon Age Evidence. Science in China (Series D), 49(2): 113-123. doi: 10.1007/s11430-005-0121-7 [93] Zong, R.W., Gong, Y.M., Wang, G.C., 2014. Carboniferous Stratal Sequence and Its Palaeogeographical Evolution in Southern Western Junggar, NW China. Earth Science Frontiers, 21(2): 216-233 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201402016 [94] 安芳, 朱永峰, 2009. 新疆西准噶尔包古图组凝灰岩锆石SHRIMP年龄及其地质意义. 岩石学报, 25(6): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906014.htm [95] 陈博, 朱永峰, 2011. 新疆达拉布特蛇绿混杂岩中辉长岩岩石学、微量元素地球化学和锆石U-Pb年代学研究. 岩石学报, 27(6): 1746-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106014.htm [96] 陈家富, 韩宝福, 张磊, 2010. 西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义. 岩石学报, 26(8): 2317-2335. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008009.htm [97] 陈石, 郭召杰, 2010. 达拉布特蛇绿混杂岩带的时限和属性以及对西准噶尔晚古生代构造演化的讨论. 岩石学报, 26(8): 2336-2344. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008010.htm [98] 高睿, 肖龙, 王国灿, 等, 2013. 西准噶尔晚古生代岩浆活动和构造背景. 岩石学报, 29(10): 3413-3434. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310008.htm [99] 郭丽爽, 刘玉琳, 王政华, 等, 2010. 西准噶尔包古图地区地层火山岩锆石LA-ICP-MS U-Pb年代学研究. 岩石学报, 26(2): 471-477. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002013.htm [100] 韩宝福, 郭召杰, 何国琦, 2010. "钉合岩体"与新疆北部主要缝合带的形成时限. 岩石学报, 26(8): 2233-2246. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008002.htm [101] 韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm [102] 何国琦, 刘建波, 张越迁, 等, 2007. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定. 岩石学报, 23(7): 1573-1576. doi: 10.3969/j.issn.1000-0569.2007.07.002 [103] 贺敬博, 陈斌, 2011. 西准噶尔克拉玛依岩体的成因: 年代学、岩石学和地球化学证据. 地学前缘, 18(2): 191-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102023.htm [104] 康磊, 李永军, 张兵, 等, 2009. 新疆西准噶尔夏尔蒲岩体岩浆混合的岩相学证据. 岩石矿物学杂志, 28(5): 423-432. doi: 10.3969/j.issn.1000-6524.2009.05.002 [105] 雷敏, 赵志丹, 侯青叶, 等, 2008. 新疆达拉布特蛇绿岩带玄武岩地球化学特征: 古亚洲洋与特提斯洋的对比. 岩石学报, 24(4): 661-672. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804006.htm [106] 李辛子, 韩宝福, 季建清, 等, 2004. 新疆克拉玛依中基性岩墙群的地质地球化学和K-Ar年代学. 地球化学, 33(6): 574-584. doi: 10.3321/j.issn:0379-1726.2004.06.005 [107] 李辛子, 韩宝福, 李宗怀, 等, 2005. 新疆克拉玛依中基性岩墙群形成力学机制及其构造意义. 地质论评, 51(5): 517-522. doi: 10.3321/j.issn:0371-5736.2005.05.005 [108] 李永军, 李甘雨, 康磊, 等, 2013. 西准噶尔夏尔蒲岩体岩浆混合的锆石U-Pb年代学证据. 岩石学报, 29(9): 3023-3030. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309005.htm [109] 刘希军, 许继峰, 王树庆, 等, 2009. 新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义. 岩石学报, 25(6): 1373-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906009.htm [110] 罗照华, 卢欣祥, 王秉璋, 等, 2008. 造山后脉岩组合与内生成矿作用. 地学前缘, 15(4): 1-12. doi: 10.3321/j.issn:1005-2321.2008.04.001 [111] 苏玉平, 唐红峰, 侯广顺, 等, 2006. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究. 地球化学, 35(1): 55-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200601006.htm [112] 童英, 王涛, 洪大卫, 等, 2010. 北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义. 岩石矿物学杂志, 29(6): 619-641. doi: 10.3969/j.issn.1000-6524.2010.06.003 [113] 王强, 许继峰, 赵振华, 等, 2008. 埃达克质岩的构造背景与岩石组合. 矿物岩石地球化学通报, 27(4): 344-350. doi: 10.3969/j.issn.1007-2802.2008.04.003 [114] 王瑞, 朱永峰, 2007. 西准噶尔宝贝金矿地质与容矿火山岩的锆石SHRIMP年龄. 高校地质学报, 13(3): 590-602. doi: 10.3969/j.issn.1006-7493.2007.03.027 [115] 徐芹芹, 季建清, 韩宝福, 等, 2008. 新疆北部晚古生代以来中基性岩脉的年代学、岩石学、地球化学研究. 岩石学报, 24(5): 977-996. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805006.htm [116] 张洪伟, 康磊, 赵春环, 等, 2011. 西准噶尔夏尔蒲岩体岩浆混合的地球化学证据. 西北地质, 44(2): 41-50. doi: 10.3969/j.issn.1009-6248.2011.02.005 [117] 张旗, 钱青, 翟明国, 等, 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学成因. 岩石矿物学杂志, 24(2): 117-125. doi: 10.3969/j.issn.1000-6524.2005.02.005 [118] 周晶, 季建清, 韩宝福, 等, 2008. 新疆北部基性岩脉40Ar/39Ar年代学研究. 岩石学报, 24(5): 997-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805007.htm [119] 纵瑞文, 龚一鸣, 王国灿, 2014. 西准噶尔南部石炭纪地层层序及古地理演化. 地学前缘, 21(2): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402018.htm