Tectonic Uplift of Mountains in Northwestern Junggar since Late Cenozoic: Evidences from Sedimentology and Magnetic Fabric in Heshituoluogai Basin
-
摘要: 通过对准噶尔西北缘和什托洛盖盆地新近系白杨河剖面详细的沉积学和磁组构的研究, 探讨了准噶尔西北部山地约7 Ma以来的构造变化.白杨河剖面由下至上可划分为塔西河组、独山子组和西域组, 分别对应于浅湖相、扇三角洲相和砾质辫状河相.古流向和砾石成分分析表明, 剖面物源来自和什托洛盖盆地北侧山地.根据沉积学和磁化率与磁组构参数(Pj、T、L和F)的变化, 准噶尔西北部地区约7 Ma以来的构造-环境演变可划分为3个阶段: 阶段Ⅰ(6.80~3.50 Ma): 浅湖相, 磁化率和磁组构参数值为剖面最低, 且变化幅度很小, 代表了构造环境比较稳定, 地势高差较小或物源区较远; 阶段Ⅱ(3.50~2.58 Ma): 扇三角洲相, 沉积速率、磁化率和磁组构参数值显著增大, 表明准噶尔西北部山地强烈隆升; 阶段Ⅲ(<2.58 Ma): 砾质辫状河相, 磁化率和磁组构参数值进一步增大, 可能是构造隆升与气候变化共同作用的结果.3.50 Ma准噶尔西北部山地强烈的构造隆升与天山地区和青藏高原周缘约3.00~4.00 Ma的构造隆升具有准同时性, 是印度-欧亚板块陆内俯冲挤压远程效应表现.Abstract: Through the results of detailed sedimentological and magnetic fabric study, on the Heshituoluogai basin, northwestern Junggar, we discussed the tectonic evolution since 7 Ma ago in the northwestern Junggar. The Baiyanghe section can be divided into Taxihe Formation, Dushanzi Formation and Xiyu Formation from bottom to up, corresponding to the lacustrine facies, fan delta facies and gravelly braided river facies. Paleocurrent and provenance analysis shows that the provenance of the section comes from the northern mountains nearby the basin. On the basis of the sedimentterological and magnetic fabric results, we divided the tectonic-sedimentary evolution of northwestern Junggar into three stages since 7 Ma ago: Ⅰ(6.80-3.50 Ma), lacustrine facies, lowest magnetic susceptibility and magnetic fabric parameters with small changes, indicating a stable tectonic environment, small topographic elevation difference or far provenance area; Ⅱ(3.50-2.58 Ma), fan delta facies, significant increase of the sedimentation rate, magnetic fabric parameters and magnetic susceptibility all suggest that the northwestern Junggar mountains underwent intense tectonic uplift; Ⅲ(< 2.58 Ma), gravelly braided river facies, magnetic fabric parameters and magnetic susceptibility increases further, which coused by tectonic uplift and climate change together. The tectonic uplift of the northwestern Junggar mountains occured at 3.50 Ma is almost synchronous with the uplift of the Tianshan Mountains and the Tibetan plateau occurred at 3.00-4.00 Ma, which is influenced by the far-filed effects of the India-Asia intracontinental subduction extrusion.
-
Key words:
- sedimentary facies /
- magnetic fabric /
- western Junggar /
- tectonic uplift /
- Late Cenozoic
-
图 3 白杨河实测剖面岩性岩相柱状图
岩相代号见表 1
Fig. 3. Lithologic and lithofacies columnar section of the measured Baiyanghe section
表 1 白杨河剖面地层沉积岩相(微相)划分
Table 1. Lithofacies classification of the strata at Baiyanghe section
相符号 岩相 沉积构造 解释 Gm 砾石,分选差,次圆状、块状或大致呈层状,杂基充填 块状层理,叠瓦状构造 重力流沉积 Gl 分选差,薄层或透镜状,杂基-颗粒支撑,粗砂至细砾 粒序层理或无内部组构 河道充填 Gc 砾石,泥质填隙 块状构造 碎屑流沉积 Sh 细-粗砂,中-差分选,含砾 平行层理 高流态沉积 Sm 细-粗砂,中-差分选,含砾 块状层理 高流态沉积 St 细-粗砂,中-好分选 块状,小型板状、槽状交错层理 高含砂水流快速沉积 Fsc 粉砂,泥 块状 中-低流态沉积 Fm 粉砂,块状泥 块状,水平层理 河漫滩或湖泊沉积 注:据Miall(1984, 1996)修改. 表 2 白杨河剖面磁组构参数
Table 2. Magnetic fabric parameters of sedimentary rocks from Baiyanghe section
地层 磁组构参数(括号内为平均值) Km(10-5) L F Pj T 塔西河组 15.8~48.6(36.7) 1.001~1.014(1.004) 1.001~1.019(1.006) 1.003~1.027(1.010) -0.701~0.704(0.173) 独山子组 35.6~176.2(73.0) 1.001~1.027(1.008) 1.002~1.064(1.020) 1.005~1.081(1.029) -0.332~0.875(0.341) 西域组 53.1~107.8(79.2) 1.003~1.008(1.005) 1.002~1.030(1.017) 1.005~1.037(1.023) -0.322~0.808(0.318) -
[1] Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, 1993. Regional Geology of Xinjiang. Geological Publishing House, Beijing, 400-425 (in Chinese). [2] Buslov, M.M., Kokh, D.A., De Grave, J., 2008. Mesozoic-Cenozoic Tectonics and Geodynamics of Altai, Tien Shan, and Northern Kazakhstan, from Apatite Fission-Track Data. Geologiya i Geofizika (Russian Geology and Geophysics), 49(9): 648-654(862-870). doi: 10.1016/j.rgg.2008.01.006 [3] Buslov, M.M., Zykin, V.A., Novikov, L.S., et al., 1999. Cenozoic History of the Chuya Depression (Gorny Altai): Structure and Geodynamics. Geologiya i Geofizika (Russian Geology and Geophysics), 40(12): 1720-1736 (1687-1701). http://www.researchgate.net/publication/265934013_The_Cenozoic_history_of_the_Chuya_depression_Gorny_Altai_Structure_and_geodynamics [4] Charreau, J., Chen, Y., Gilder, S., et al., 2005. Magnetostratigraphy and Rock Magnetism of the Neogene Kuitunhe Section (Northwest China): Implication for Late Cenozoic Uplift of the Tianshan Mountains. Earth and Planetary Science Letters, 230(2005): 177-192. doi: 10.1016/j.epsl.2004.11.002 [5] Charreau, J., Gilder, S., Chen, Y., et al., 2006. Magnetostratigraphy of the Yaha Section, Tarim Basin (China): 11 Ma Acceleration in Erosion and Uplift of the Tianshan Mountains. Geology, 34(3): 181-184. doi: 10.1130/G22106.1 [6] Charreau, J., Gumiaux, C., Avouac, J.P., et al., 2009. The Neogene Xiyu Formation, a Diachronous Prograding Gravel Wedge at Front of the Tianshan: Climatic and Tectonic Implications. Earth and Planetary Science Letters, 287(3-4): 298-310. doi: 10.1016/j.epsl.2009.07.035 [7] Clark, M.K., Farley, K.A., Zheng, D., et al., 2010. Early Cenozoic Faulting of the Northern Tibetan Plateau Margin from Apatite (U-Th)/He Ages. Earth and Planetary Science Letters, 296(1): 78-88. doi: 10.1016/j.epsl.2010.04.051 [8] Collinson, D.W., 1986. Methods in Rock Magnetism. Allen and Unwin (Publishers) Lid., London. [9] Deng, Q.D., Feng, X.Y., Zhang, P.Z., et al., 2000. Active Tectonics of the Tianshan Mountains. Seismological Press, Beijing (in Chinsese). [10] Ding, Z.L., Xiong, S.F., Sun, J.M., et al., 1999. Paleostratigraphy and Paleomagnetism of at ~7.0 Ma Eolian Loess-Red Clay Sequence at Lingtai, Loess Plateau, North-Central China and the Implications for Paleomonsoon Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1): 49-66. doi: 10.1016/S0031-0182(99)00034-6 [11] Dobretsov, N.L., Berzin, N.A., Buslov, M.M., et al., 1995. General Aspects of the Evolution of the Altai Region and the Interrelationships between Its Basement Pattern and the Netotectonic Structural Development. Geologiya i Geofizika (Russian Geology and Geophysisc), 36(10): 5-19. http://www.researchgate.net/publication/284047947_General_aspects_of_the_evolution_of_the_Altai_region_and_the_interrelationships_between_its_basement_pattern_and_the_neotectonic_structural_development [12] Dobretsov, N.L., Buslov, M.M., Delvaux, D., et al., 1996. Meso- and Cenozoic Tectonics of the Central Asian Mountain Belt: Effect of Lithospheric Plate Interaction and Mantle Plume. Intern. Geol. Rev., 38(5): 430-466. doi: 10.1080/00206819709465345 [13] Dunlop, D.J., Ozdemiro, O., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge. [14] Dupont-Nivet, G., Butler, R.F., Yin, A., et al., 2002. Paleomagnetism Indicates no Neogene Rotation of the Qaidam Basin in Northern Tibet during Indo-Asian Collision. Geology, 30(3): 263-266. doi:10.1130/0091-7613(2002)030<0263:PINNRO>2.0.CO;2 [15] Fang, X.M., Li, J.J., Zhu, J.J., et al., 1997. Measured the Absolute Age and Divided the Cenozoic Strata of Linxia Basin in Gansu Province. Chinese Science Bulletin, 42(14): 1457-1471 (in Chinese). doi: 10.1360/csb1997-42-14-1457 [16] Fang, X.M., Garzione, C., van der Voo, R., et al., 2003. Flexural Subsidence by 29 Ma on the NE Edge of Tibet from the Magnetostratigraphy of Linxia Basin, China. Earth and Planetary Science Letters, 210(3-4): 545-560. doi: 10.1016/S0012-821X(03)00142-0 [17] Fang, X.M., Yan, M.D., van der Voo, R., et al., 2005. Late Cenozoic Deformation and Uplift of the NE Tibetan Plateau: Evidence from High-Resolution Magnetostratigraphy of the Guide Basin, Qinghai Province, China. GSA Bulletin, 117(9-10): 1208-1225. doi: 10.1130/B25727.1 [18] Fang, X.M., Zhang, W.L., Meng, Q.Q., et al., 2007. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2): 293-306. doi: 10.1016/j.epsl.2007.03.042 [19] Gilder, S., Chen, Y., Sen, S., 2001. Oligo-Miocene Magnetostratigraphy and Rock Magnetism of the Xishuigou section, Subei (Gansu Province, Western China) and Implications for Shallow Inclinations in Central Asia. Journal of Geophysical Research: Solid Earth (1978-2012), 106(B12): 30505-30521. doi: 10.1029/2001JB000325 [20] Guo, Z.J., Zhang, Z.C., Wu, C.D., et al., 2006. The Mesozoic and Cenozoic Exhumation History of Tianshan and Comparative Studies to the Junggar and Altai Mountains. Acta Geologica Sinica, 80(1): 1-15 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2006.tb00788.x [21] Heermance, R.V., Chen, J., Burbank, D.W., et al., 2007. Chronology and Tectonic Controls of Late Tertiary Deposition in the Southwestern Tian Shan Foreland, NW China. Basin Research, 19(4): 599-632. doi: 10.1111/j.1365-2117.2007.00339.x [22] Hendrix, M.S., Dumitru, T.A., Graham, S.A., 1994. Late Oligocene-Early Miocence Unroofing in the Chinese Tian Shan: An Early Effect of the India-Asia Collision. Geology, 22(6): 487-490. doi:10.1130/0091-7613(1994)022<0487:LOEMUI>2.3.CO;2 [23] Hrouda, F., 1982. Magnetic Anisotropy of Rocks and Its Application to Geology and Geophysics. Geophys. Surv., 5(1): 37- 82. doi: 10.1007/BF01450244 [24] Huang, B.C., Piper, J.D.A., Peng, S.T., et al., 2006. Magnetostratigraphic Study of the Kuche Depression, Tarim Basin, and Cenozoic Uplift of the Tian Shan Range, Western China. Earth and Planetary Science Letters, 251(3-4): 346-364. doi: 10.1016/j.epsl.2006.09.020 [25] Hu, Y., Xia, B., Guo, F., et al., 2012. Tectonic Evolution and Its Influence on Hydrocarbon Accumulation of Heshituoluogai Basin in Northwest Xinjiang. Geology and Resources, 21(4): 380-385 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201204009.htm [26] Jelinek, V., 1981. Characterization of the Magnetic Fabrics of Rocks. Tectonophysics, 79(3-4): 63-67. doi: 10.1016/0040-1951(81)90110-4 [27] Li, C.X., Dupont-Nivet, G., Guo, Z.J., 2011. Magnetostratigraphy of the Northern Tian Shan Foreland, Taxihe Section, China. Basin Research, 23(1): 101-117. doi: 10.1111/j.1365-2117.2010.00475.x [28] Li, J.J., Fang, X.M., 1998. Research on the Uplift of the Qinghai-Xizang Plateau and Environment Changes. Chinese Science Bulltein, 43(15): 1569-1574 (in Chinese). doi: 10.1360/csb1998-43-15-1569 [29] Li, J.J., Fang, X.M., Pan, B.T., et al., 2001. Late Cenozoic Intensive Uplift of Qinghai-Xizang Plateau and Its Impacts on Environments in Surrounding Area. Quaternary Sciences, 21(5): 381-391 (in Chinese with English abstract). http://www.researchgate.net/publication/284098400_Late_Cenozoic_intensive_uplift_of_Qinghai-Xizang_Plateau_and_its_impacts_on_environments_in_surrounding_area [30] Lü, H.H., Li, Y.L., Liu, Y.M., et al., 2008. Sedimentary Environment Evolution since 8 Ma BP in the Taxihe Area, Xinjiang, Northwest China and Its Tectonic Significance. Quaternary Sciences, 28(2): 243-252 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200802007.htm [31] Ma, B.J., Zeng, W.G., Yu, F.S., et al., 2009. Tectonic Evolution and Hydrocarbon Potential in Heshituoluogai Basin in Northern Margin of Xinjiang. Xinjiang Petroleum Geology, 30(1): 13-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200901005.htm [32] Miall, A.D., 1984. Principles of Sedimentary Basin Analysis. Springer, New York, 688. [33] Miall, A.D., 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, Berling, 99-130. [34] Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 220: 419-426. http://www.ncbi.nlm.nih.gov/pubmed/17781869 [35] Smit, J.H.W., Cloetingh, S.A.P.L., Burrov, E., et al., 2012. Interference of Lithospheric Flooding in Western Central Asia by Simultaneous Indian and Arabian Plate Indentation. Tectonophysics, 602(14): 176-193. doi: 10.1016/j.tecto.2012.10.032 [36] Soto, R., Larrasona, J.C., Arlegui, L.E., et al., 2009. Reliability of Magnetic Fabric of Weakly Deformed Mudrocks as a Palaeostress Indicator in Compressive Settings. Journal of Structural Geology, 31(5): 512-522. doi: 10.1016/j.jsg.2009.03.006 [37] Sun, D.H., Zhang, Y.B., Han, F., et al., 2011. Magnetostratigraphy and Paleoenvironmental Records for a Late Cenozoic Sedimentary Sequence from Lanzhou, Northeastern Margin of the Tibetan Plateau. Global and Planetary Change, 76(3): 106-116. http://www.sciencedirect.com/science/article/pii/S0921818110002626 [38] Sun, J.M., Xu, Q.H., Huang, B.C., 2007. Late Cenozoic Magnetochronology and Paleoenvironmental Changes in the Northern Foreland Basin of the Tianshan Mountains. Journal of Geophysical Research: Solid Earth (1978-2012), 112(B4). doi: 10.1029/2006JB004653 [39] Sun, J.M., Zhu, R.X., 2006. Cenozoic Deposits in the Northern Tianshan Mountains and Its Implications for Neotectonics and Environmental Changes. Quaternary Sciences, 26(1): 14-19 (in Chinese with English abstract). http://www.oalib.com/paper/1571444 [40] Sun, J.M., Zhu, R.X., An, Z.S., 2005. Tectonic Uplift in the Northern Tibetan Plateau since 13.7 Ma Ago Inferred from Molasse Deposits along the Altyn Tagh Fault. Earth and Planetary Science Letters, 235(3-4): 641-653. doi: 10.1016/j.epsl.2005.04.034 [41] Sun, J.M., Zhu, R.X., Bowler, J., 2004. Timing of the Tianshan Mountains Uplift Constrained by Magnetostratigraphic Analysis of Molasse Deposits. Earth and Planetary Science Letters, 219(3-4): 239-253. doi: 10.1016/S0012-821X(04)00008-1 [42] Tang, Z.H., Huang, B, C., Dong, X.X., et al., 2012. Anisotropy of Magnetic Susceptibility of the Jingou River section: Implications for the Late Cenozoic Uplift of the Tian Shan. Geochemistry, Geophysics, Geosystems, 13: Q03022. http://cpfd.cnki.com.cn/article/cpfdtotal-dzdq201301007017.htm [43] Tapponnier, P., Molnar, P., 1979. Active Faulting and Cenozoic Tectonic of the Tien Shan, Mongolia, and Baykal Regions. J. Geophys. Res., 84(B7): 3425-3459. doi: 10.1029/JB084iB07p03425 [44] Tarling, D.H., Hrouda, F., 1993. The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 217. [45] Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen and Unwin Press, London. [46] Thouveny, N., de Beaulieu, J.L., Bonifay, E., 1994. Climate Variations in Europe over the Past 140 kyr Deduced from Rock Magnetism. Nature, 371: 503-506. doi: 10.1038/371503a0 [47] Wang, G.C., Cao, K., Zhang, K.X., et al., 2011. Spation-Temporal Framework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic. Science China Earth Sciences, 54(1): 29-44. doi: 10.1007/s11430-010-4110-0 [48] Xiao, X.C., Tang, Y.Q., Li, J.Y., et al., 1991. Tectonic Evolution of the Southern Margin of the Central Asian Complex Megasuture Belt. Beijing Science and Technology Press, Beijing, 151-155 (in Chinese). [49] Xu, F.Y., Wang, L.B., 1994. Measurement of Anisotropy of Magnetic Susceptibility on Xiashu Loess and Its Implication to Sedimentology. Acta Sedimentologica Sinica, 12(2): 94-100 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB402.011.htm [50] Yin, A., 2010. Cenozoic Tectonic Evolution of Asia: A Preliminary Synthesis. Tectonophysics, 488(1-4): 293-325. doi: 10.1016/j.tecto.2009.06.002 [51] Yu, Q.F., Zheng, M., 1992. Analysis of Magnetic Fabric in Rocks and Its Applications for Geosciences. Geological Publishing House, Beijing, 5-25 (in Chinese). [52] Zachos, J., Pagani, M., Sloan., L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686-693. doi: 10.1126/science.1059412 [53] Zhang, H.Y., 1985. The Quaternary Glaciations in the Tianshan Mountains. In: Xinjiang University, Bueurou of Xinjiang Geology, Xinjiang Division of Chinese Academy of Sciences, et al., eds., Proceeding of the Quaternary Research in the Arid Xinjiang. People's Press of Xinjiang, Urumqi, 55-68 (in Chinese). [54] Zhang, K.X., Wang, G.C., Cao, K., et al., 2008. Cenozoic Sedimentary Records and Geochronological Constaints of Differential Uplift of the Qinghai-Tibet Plateau. Science in China (Series D), 51(11): 1658-1672. doi: 10.1007/s11430-008-0132-2 [55] Zhang, K.X., Wang, G.C., Chen, F.L., et al., 2007. Coupling between the Uplift of Qinghai-Tibet Plateau and Distribution of Basins of Paleogene-Neogene. Earth Science—Journal of China University of Geosciences, 32(5): 583-597 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200705002.htm [56] Zhang, K.X., Wang, G.C., Ji, J.L., et al., 2010. Paleogene-Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai-Tibet Plateau and Their Response to Uplift of the Plateau. Science in China (Series D), 53(9): 1271-1294. doi: 10.1007/s11430-010-4048-2 [57] Zhang, P.Z., Molnar, P., Downs, W.R., 2001. Increased Sedimentation Rates and Grain Sizes 2-4 Myr Ago due to the Influence of Climate Change on Erosion Rates. Nature, 410(6831): 891-897. doi: 10.1038/35073504 [58] Zhang, P.Z., Zheng, D.W., Yin, G.M., et al., 2006. Discussion on Late Cenozoic Growth and Rise of Northeastern Margin of the Tibetan Plateau. Quaternary Sciences, 26(1): 5-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200601001.htm [59] Zhang, W., Appel, E., Fang, X., et al., 2012. Paleoclimatic Implications of Magnetic Susceptibility in Late Pliocene-Quaternary Sediments from Deep Drilling Core SG-1 in the Western Qaidam Basin (NE Tibetan Plateau). Journal of Geophysical Research: Solid Earth (1978-2012), 117(B6). doi: 10.1029/2011JB008949 [60] Zheng, D.W., Zhang, P.Z., Wan, J.L., et al., 2006. Rapid Exhumation at ~8 Ma on the Liupan Shan Thrust Fault from Apatite Fission-Track Thermochronology: Implications for Growth of the Northeastern Tibetan Plateau Margin. Earth and Planetary Science Letters, 248(1): 198-208. doi: 10.1016/j.epsl.2006.05.023 [61] Zheng, D.W., Zhang, P.Z., Wang, J.L., et al., 2003. Late Cenozoic Deformation Subsquence in Northeastern Margin of Tibet: Detrital AFT Records from Linxia Basin. Science in China (Series D), 33(Suppl. 1): 190-198 (in Chinese). [62] Zhong, D.L., Ding, L., 1996. Rising Process of the Qinghai-Xizang (Tibet) Plateau and Its Mechanism. Science in China (Series D), 26(4): 289-295 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG199604003.htm [63] 新疆维吾尔自治区地质矿产局, 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社, 400-425. [64] 邓起东, 冯先岳, 张培震, 等, 2000. 天山活动构造. 北京: 地震出版社. [65] 方小敏, 李吉均, 朱俊杰, 等, 1997. 甘肃临夏盆地新生代地层绝对年代测定与划分. 科学通报, 42(14): 1457-1471. doi: 10.3321/j.issn:0023-074X.1997.14.001 [66] 郭召杰, 张志诚, 吴朝东, 等, 2006. 中、新生代天山隆升过程及其与准噶尔、阿尔泰山比较研究. 地质学报, 80(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601000.htm [67] 胡杨, 夏斌, 郭峰, 等, 2012. 新疆和什托洛盖盆地构造演化特征及其对油气藏的影响. 地质与资源, 21(4): 380-385. doi: 10.3969/j.issn.1671-1947.2012.04.008 [68] 李吉均, 方小敏, 1998. 青藏高原隆起与环境变化研究. 科学通报, 43(15): 1569-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199815000.htm [69] 李吉均, 方小敏, 潘保田, 等, 2001. 新生带晚期青藏高原强烈隆起及其对周边环境的影响. 第四纪研究, 21(5): 381-391. [70] 吕红华, 李有利, 刘运明, 等, 2008. 新疆塔西河地区8 Ma以来沉积环境演化及其构造意义. 第四纪研究, 28(2): 243-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200802007.htm [71] 马宝军, 曾文光, 于福生, 等, 2009. 新疆北缘和什托洛盖盆地构造与含油气远景. 新疆石油地质, 30(1): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200901005.htm [72] 孙继敏, 朱日祥, 2006. 天山北麓新生代沉积及其新构造与古环境指示意义. 第四纪研究, 26(1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200601002.htm [73] 肖序常, 汤耀庆, 李锦铁, 等, 1991. 古中亚复合巨型缝合带南缘构造演化. 北京: 北京科学技术出版社, 1-150. [74] 许峰宇, 王力波, 1994. 磁化率各项异性在沉积学中的应用. 沉积学报, 12(2): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB402.011.htm [75] 余钦范, 郑敏, 1992. 岩石磁组构分析及其在地学中的应用. 北京: 地质出版社, 5-25. [76] 张鸿义, 1985. 北天山第四纪古冰川作用的研究. 见: 新疆大学, 新疆地质矿产局, 中国科学院新疆分院等编, 干旱区第四纪研究论文纪. 乌鲁木齐: 新疆人民出版社, 55-68. [77] 张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合. 地球科学——中国地质大学学报, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm [78] 张培震, 郑德文, 尹功明, 等, 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论. 第四纪研究, 26(1): 5-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200601001.htm [79] 郑德文, 张培震, 万景林, 等, 2003. 青藏高原东北边缘晚新生代构造变形的时序——临夏盆地碎屑颗粒磷灰石裂变径迹记录. 中国科学(D辑), 33(增刊1): 190-198. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1020.htm [80] 钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑), 26(4): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604000.htm