A 3D Geological Modeling Method Based on Geophysical Data
-
摘要: 地质采样信息不足是制约深部三维地质建模的重要因素, 深部物性探测数据由于其易于获取而能够有效形成可视化模型.结合这一特点, 在地质调查项目工作中探索出了一种基于物性探测数据的三维地质建模方法.它首先利用岩石样品物性测量实验数据提取出物性参数及其对应地质属性的映射关系, 然后将不同地球物理方法所获取到的物性数据进行综合建模并解释, 最后将解释后的可视化模型转换为地质三维模型.实践证明, 该方法能够针对性地解决项目中的一些深部地质三维建模问题.Abstract: Inadequate geological sampling information is a major constraint for 3D geological modeling of the deep geological body. Since it is relatively easier to acquire the deep geophysical data, the visualization model of the geophysical data can be formed effectively. In this study, a 3D geological modeling method by the geophysical data collected in the geological survey is proposed. It involves firstly extracting the mapping function from geophysical data to the geological property by geophysical experiment on the samples, and then integrating the visualization models constructed from multi-source geophysical data for interpretation, and finally converting the interpreted visualization model to the 3D geological model. The method proves feasible for solutions on 3D modeling concerning deep geological bodies in the project.
-
表 1 样品实验数据示例
Table 1. A case of the experimental data
属性 属性值 密度(g/cm3) 2.628 7 磁化率(10-6) 18.800 0 电阻率(Ω·m) 4 842.850 0 极化率(%) 0.890 1 … … 岩性 紫红色硅质岩 表 2 几种方法比较结果
Table 2. The comparison result of several methods
方法 正确率(%) 收敛速度 稳定性 信息粒模型 87.4 较快 中 模糊聚类 83.6 快 中 硬聚类 78.8 快 高 神经网络 81.6 慢 低 支持向量机 86.5 较快 高 -
[1] Gong, J.Y., Cheng, P.G., Wang, Y.D., 2004. Three-Dimensional Modeling and Application in Geological Exploration Engineering. Computers & Geosciences, 30(4): 391-404. doi: 10.1016/j.cageo.2003.06.003 [2] Huang, W., Ding, L.X., Oh, S.K., et al., 2010. Identification of Fuzzy Inference System Based on Information Granulation. KSII Transactions on Internet and Information Systems, 4(4): 575-594. [3] Lim, J.S., 2005. Reservoir Properties Determination Using Fuzzy Logic and Neural Networks. Journal of Petroleum Science and Engineering, 49(3): 182-192. doi: 10.1016/j.petrol.2005.05.005 [4] Malehmir, A., Thunehed, H., Tryggvason, A., 2008. The Paleoproterozoic Kristineberg Mining Area, Northern Sweden: Results from Integrated 3D Geophysical and Geologic Modeling, and Implications for Targeting Ore Deposits. Geophysics, 74(1): B9-B22. doi: 10.1190/1.3008053 [5] Martelet, G., Calcagno, P., Gumiaux, C., et al., 2004. Integrated 3D Geophysical and Geological Modelling of the Hercynian Suture Zone in the Champtoceaux Area (South Brittany, France). Tectonophysics, 382(1): 117-128. doi: 10.1016/j.tecto.2003.12.009 [6] Ning, F.L., Wei, J., 2009.3D Visualization of Stratum with Faults Based on VTK. 2009 International Conference on Computational Intelligence and Software Engineering, Beijing, 1-3. doi: 10.1109/CISE.2009.5366084 [7] Song, L., Wang, X.M., Zhao, W., et al., 2011. The Design and Implementation of the Software Package for Lithology-Petrophysical Property Joint Inversion. Progress in Geophysics, 26(4): 1304-1311 (in Chinese with English abstract). http://www.cqvip.com/QK/98047X/201104/39528351.html [8] Trampert, J., van der Hilst, R.D., 2005. Towards a Quantitative Interpretation of Global Seismic Tomography. Geophysical Monograph Series, 160(1): 47-64. doi: 10.1029/160GM05 [9] Wang, H.N., Li, Z.B., Yang, S.D., et al., 1998. Evaluation of Stability and Reliability of Complex Lithology Interpreting Models. Acta Geophysica Sinica, 41(4): 561-569 (in Chinese with English abstract). http://www.researchgate.net/publication/295175668_Evaluation_of_stability_and_reliability_of_complex_lithology_interpreting_models [10] Wu, Q., Xu, H., Zou, X.K., 2005. An Effective Method for 3D Geological Modeling with Multi-Source Data Integration. Computers & Geosciences, 31(1): 35-43. doi: 10.1016/j.cageo.2004.09.005 [11] Xu, H.B., Li, R., Zou, W., et al., 2006. Lithologic Recognition with Fuzzy Clustering. Chinese Journal of Computing Techniques for Geophysical and Geochemical Exploration, 28(4): 319-322 (in Chinese with English abstract). http://www.researchgate.net/publication/289895822_Lithologic_recognition_with_fuzzy_clustering [12] Yao, Y.Y., 2001. Information Granulation and Rough Set Approximation. International Journal of Intelligent Systems, 16(1): 87-104. doi: 10.1002/1098-111X(200101)16:1<87::AID-INT7>3.0.CO;2-S [13] Yu, X.Y., Xu, Y.X., Luo, M., 2012. Use Information Granulation to Construct the Well-Logging Lithology Interpretation Model. Chinese Journal of Computing Techniques for Geophysical and Geochemical Exploration, 34(6): 703-707 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTHT201206014.htm [14] Yu, X.Y., Xu, Y.X., Ma, H.L., 2012. Construct a Lithology Identification Model Based on Information Granulation. Near-Surface Geophysics and Environment Protection, Denver, 399-403. [15] 宋亮, 王秀闽, 赵伟, 等, 2011. 岩性物性联合反演系统设计与实现. 地球物理学进展, 26(4): 1304-1311. doi: 10.3969/j.issn.1004-2903.2011.04.022 [16] 汪宏年, 李舟波, 杨善德, 1998. 复杂岩性解释模型稳定性和可靠性评价. 地球物理学报, 41(4): 561-569. doi: 10.3321/j.issn:0001-5733.1998.04.015 [17] 徐海波, 李瑞, 邹炜, 等, 2006. 模糊聚类实现岩性自动划分. 物探化探计算技术, 28(4): 319-322. doi: 10.3969/j.issn.1001-1749.2006.04.008 [18] 余翔宇, 徐义贤, 骆淼, 2012. 应用信息粒方法构建测井岩性解释模型. 物探化探计算技术, 34(6): 703-707. doi: 10.3969/j.issn.1001-1749.2012.06.13