Thermal Regime at Bottom of Thermokarst Lakes along Qinghai-Tibet Engineering Corridor
-
摘要: 热融湖塘对寒区环境可产生较大影响, 其侧向热侵蚀会诱发冻土工程病害.选取青藏工程走廊热融湖塘分布密集的楚玛尔河、五道梁、北麓河3个亚区, 于2009—2010年通过HOBO水位传感器对4个固定湖塘的连续监测和大量湖塘的随机观测, 探讨了不同季节、不同水深湖底的热状态.在结冰期的1月中旬, 楚玛尔河90%以上的湖塘湖底温度都在0 ℃以下, 主要与湖塘较浅和湖水高矿化度有关.五道梁和北麓河湖底温度相对较高, 只有约20%的湖底温度低于0 ℃, 这些湖水深小于最大冻结冰层厚度; 最高温度高于4 ℃, 主要与湖较深有关.但3个亚区湖底温度均随着水深增加而增加.在6~9月融冰期, 湖底温度普遍增加, 最高达到18 ℃以上, 浅湖增温快于深湖, 湖底温度随着水深增加而递减.湖底温度年际变化近似为正弦曲线, 在1~2月, 湖底温度最低, 之后逐渐升高, 到7~8月, 湖底温度达到最高.Abstract: Thermokarst lakes have greatly influenced landscapes in cold regions, and the thermal erosion of their lakeshores may induce ground instability that affects infrastructure. Our study area includes three sub-regions where thermokarst lakes have obviously extended: the Chumaerhe high plateau, Wudaoliang basin, and Beiluhe basin. Based on continual monitoring of four lakes, and sporadic observation of lake-bottom temperatures of many lakes using HOBO Sensors in 2009—2010, the thermal regime of lake bottoms and the relation between lake-bottom temperature and water depth are examined. The results show that in January, when ice cover was present, the lake-bottom temperatures at 90% of the lakes in Chumarhe high plateau were below 0 ℃, which is likely because of shallow depths and high salinity of lakes in the region. However, the lake-bottom temperature of most lakes in Wudaoliang and Beiluhe basins were above 0 ℃, except in some lakes shallower than the maximum ice thickness. In general, lake-bottom temperature in the three sub-regions increased with water depth during this period. When lakes were free of ice between June and October, the lake-bottom temperatures in the three sub-regions were all warm and the highest temperature was near 18 ℃. The seasonal increase in lake-bottom temperature in summer is more rapid in shallower lakes, and the temperatures were inversely related to water depth. The annual variation in lake-bottom temperature approximates a sinusoidal curve, with the coldest temperature occurring in January to February and the warmest in July to August.
-
Key words:
- thermokarst lake /
- lake bottom /
- thermal regime /
- frozen soil /
- Qinghai-Tibet engineering corridor
-
表 1 2009—2010年热融湖塘湖底温度调查结果
Table 1. Temperatures at the lake-bottom in study regions in 2009-2010
研究区 水深(cm) 湖底温度(℃) 2010年1月 2010年6月 2009年7月 2010年9月 2010年10月 楚玛尔河高平原 <20 14.0 11.6 20~30 -12.4 15.1 11.6 30~40 -12.2 10.8 40~50 -8.5 18.1 11.2 11.9 50~60 -8.5 17.9 10.8 11.2 4.9 60~70 -4.4 18.5 11.0 5.3 70~80 -3.4 11.3 80~90 -3.5 9.6 11.8 90~100 0.4 18.6 11.7 100~110 5.0 110~120 17.9 11.2 120~130 -1.9 17.6 9.2 130~140 -0.3 140~150 -1.7 15.9 8.7 6.8 >150 -1.7 14.7 4.9 五道梁盆地 40~50 5.1 50~60 -4.8 5.6 60~70 13.9 70~80 13.1 4.4 80~90 0.5 9.8 4.1 90~100 7.2 12.0 100~110 1.4 7.7 14.9 12.6 4.8 110~120 1.9 7.4 13.5 120~130 2.6 11.4 4.0 130~140 12.8 4.1 140~150 3.4 7.0 4.6 150~160 12.0 4.5 160~170 7.1 10.9 4.5 170~180 7.1 12.1 180~190 2.1 5.2 190~200 3.9 12.8 200~220 3.8 11.0 4.7 >250 4.5 11.2 北麓河盆地 <30 13.1 30~40 12.8 12.8 40~50 -10.6 11.3 7.5 50~60 12.1 60~70 10.7 70~80 10.7 6.8 80~90 0.1 10.5 13.0 90~100 0.7 11.3 13.4 13.0 100~110 8.4 13.4 7.0 110~120 9.0 6.7 120~130 3.9 12.9 130~140 4.1 8.2 13.2 140~150 0.2 7.6 13.1 11.6 6.6 150~160 11.8 6.4 160~170 7.8 10.9 6.5 170~180 4.3 11.9 6.8 180~190 190~200 3.5 9.5 11.0 >200 4.3 表 2 4个湖塘相关参数
Table 2. Parameters of four lakes at two sub-regions
亚区 湖塘类型 深度h(cm) 湖底年平均温度T0(℃) 湖底温度年振幅A(℃) 五道梁盆地 深湖 227 5.9 10 浅湖 108 3.8 14 北麓河盆地 深湖 231 5.5 7 浅湖 68 2.5 29 表 3 4个湖塘湖底温度最高最低值出现情况
Table 3. Max and min temperatures at lake-bottom of four lakes and the date of occurrence
亚区 湖塘类型 深度h(cm) 最低温度 最高温度 出现日期 温度(℃) 出现日期 温度(℃) 五道梁盆地 深湖 227 1月26日 2.1 8月26日 11.8 浅湖 108 2月21日 -1.7 7月29日 13.0 北麓河盆地 深湖 231 2月18日 3.0 7月27日 10.6 浅湖 68 1月20日 -14.0 8月7日 15.0 -
[1] Brewer, M.C., 1958. The Thermal Regime of an Arctic. Eos Transactions American Geophysical Union, 39(2): 278-284. doi: 10.1029/TR039i002p00278 [2] Burn, C.R., 2002. Tundra Lakes and Permafrost, Richards Island, Western Arctic Coast, Canada. Canadian Journal of Earth Sciences, 39(8): 1281-1298. doi: 10.1139/e2012-043 [3] Burn, C.R., 2005. Lake-Bottom Thermal Regimes, Western Arctic Coast, Canada. Permafrost and Periglacial Progresses, 16(4): 355-367. doi: 10.1002/ppp.542 [4] Cheng, G.D., 2002. Interaction between Qinghai-Tibet Railway Engineering and Permafrost and Environmental Effects. Bulletin of Chinese Academy of Sciences, (1): 21-25 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=KYYX200201006&dbcode=CJFD&year=2002&dflag=pdfdown [5] Harris, S.A., 2002. Causes and Consequences of Rapid Thermokarst Development in Permafrost or Glacial Terrain. Permafrost and Periglacial Processes, 13(3): 237-242. doi: 10.1002/ppp.419 [6] Jin, H.J., Zhao, L., Wang, S.L., et al., 2006. The Temperature's Features of Permafrost and Its Degradation Modes along the Qinghai-Tibet Highway. Science in China (Series D), 36(11): 1009-1019 (in Chinese). doi: 10.1007/s11430-006-2003-z [7] Kokelj, S.V., Jorgenson, M.T., 2013. Advances in Thermokarst Research. Permafrost and Periglacial. Processes, 24(2): 108-119. doi: 10.1002/ppp.1779 [8] Li, B.Y., Gu, G.A., Li, S.D., 1996. The Series of the Comprehensive Scientific Expedition to the Hoh Xil Region—Physical Environment of Qinghai. Science Press, Beijing, 100-114 (in Chinese). [9] Li, Y., Gao, Y.P., Tang, Y., 2011. A Study of Information Extraction Based on QuickBird—Taking the Extraction of Cultivated Land for an Example. Guangdong Agriculture Sciences, (17): 144-146 (in Chinese with English abstract). http://ieeexplore.ieee.org/document/5631076/ [10] Lin, Z.J., Niu, F.J., Ge, J.J., et al., 2010. Variation Characteristics of Thawing Lakes in Permafrost Regions of the Qinghai-Tibetan Plateau and Their Influence on the Thermal State of Permafrost. Journal of Glaciology and Geocryology, 32(2): 341-350 (in Chinese with English abstract). http://www.cqvip.com/QK/93756X/201002/33811910.html [11] Lin, Z.J., Niu, F.J., Liu, H., et al., 2011a. Hydrothermal Processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau. Cold Regions Science and Technology, 65(3): 446-455. doi: 10.1016/j.coldregions.2010.10.013 [12] Lin, Z.J., Niu, F.J., Liu, H., et al., 2011b. Disturbance-Related Thawing of a Ditch and Its Influence on Roadbeds on Permafrost. Cold Regions Science and Technology, 66(2): 105-114. doi: 10.1016/j.coldregions.2011.01.006 [13] Lin, Z.J., Niu, F.J., Lu, J.H., et al., 2011c. Changes in Permafrost Environments Caused by Construction and Maintenance of Qinghai-Tibet Highway. Journal of Central South University of Technology, 18(5): 1454-1464. doi: 10.1007/s11771-011-0861-9 [14] Lin, Z.J., Niu, F.J., Liu, H., et al., 2013. Numerical Simulation of Permafrost Degradation under Influence of Thaw Lake on Qinghai-Tibet Plateau. Acta Geologica Sinica, 87(5): 737-746 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201305011&dbcode=CJFD&year=2013&dflag=pdfdown [15] Lin, Z.J., Niu, F.J., Luo, J., et al., 2014. Analysis on Physical and Chemical Properties of Water in Thermokarst Lakes along Qinghai-Tibet Engineering Corridor. Advances in Water Science, 25(2): 217-224 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SKXJ201402009.htm [16] Lin, Z.J., Niu, F.J., Xu, Z.Y., et al., 2010. Thermal Regime of a Thermokarst Lake and Its Influence on Permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes, 21(4): 315-324. doi: 10.1002/ppp.692 [17] Ling, F., Zhang, T.J., 2003. Numerical Simulation of Permafrost Thermal Regime and Talik Development under Shallow Thaw Lakes on the Alaskan Arctic Coastal Plain. Journal of Geophysical Research Atmospheres, 108(D16): 26-36. doi: 10.1029/2002JD003014 [18] Ling, F., Wu., Q.B., Zhang, T.J., 2012. Modelling Open-Talik Formation and Permafrost Lateral Thaw under a Thermokarst Lake, Beiluhe Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes, 23(4): 312-321. doi: 10.1002/ppp.1754 [19] Niu, F.J., Dong, S., Lin, Z.J., et al., 2013. Distribution of Thermokarst Lakes and Its Thermal Influence on Permafrost along Qinghai-Tibet Highway. Advances in Earth Science, 28(6): 695-702 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201306010.htm [20] Niu, F.J., Lin, Z.J., Liu, H., et al., 2011. Characteristics of Thermokarst Lakes and Their Influence on Permafrost in Qinghai-Tibet Plateau. Geomorphology, 132(3-4): 222-233. doi: 10.1016/j.geomorph.2011.05.011 [21] Niu, F.J., Xu, J., Lin, Z.J., et al., 2008. Engineering Activity Induced Environmental Hazards in Permafrost Regions of Qinghai-Tibet Plateau. In: Kane, D.L., Hinkel, K.M., eds., Proceedings of 9th International Conference on Permafrost, Institute of Northern Engineering, University of Alaske Fairbanks, USA. [22] Ran, Y.H., Li, X., Cheng, G.D., et al., 2012. Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafrost and Periglacial Processes, 23(4): 322-333. doi: 10.1002/ppp.1756 [23] Wang, G.X., Hu, H.C., Li, T.B., 2009. The Influence of Freeze-Thaw Cycles of Active Soil Layer on Surface Runoff in a Permafrost Watershed. Journal of Hydrology, 375(3-4): 438-449. doi: 10.1016/j.jhydrol.2009.06.046 [24] Wu, Q.B., Zhang, T.J., 2008. Recent Permafrost Warming on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 113(D13): 1-22. doi: 10.1029/2007JD009539 [25] Zhou, Y.W., Guo, D.X., Qiu, G.Q., et al., 2000. Geocryological in China. Science Press, Beijing (in Chinese). [26] 程国栋, 2002. 青藏铁路工程与多年冻土相互作用及环境效应. 中国科学院院刊, (1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX200201006.htm [27] 金会军, 赵林, 王绍令, 等, 2006. 青藏公路沿线冻土的地温特征及退化方式. 中国科学(D辑), 36(11): 1009-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200611003.htm [28] 李炳元, 顾国安, 李树德., 1996. 可可西里综合科学考察系列丛书-青海可可西里地区自然环境. 北京: 科学出版社, 100-114. [29] 李奕, 高雅萍, 唐尧, 2011. 基于QuickBird数据的信息提取方法研究——以耕地提取为例. 广东农业科学, (17): 144-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201117054.htm [30] 林战举, 牛富俊, 葛建军, 等, 2010. 青藏铁路北麓河地区典型热喀斯特湖变化特征及其对冻土热状况的影响. 冰川冻土, 32(2): 341-350. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201002018.htm [31] 林战举, 牛富俊, 刘华, 等, 2013. 热融湖影响下多年冻土退化的数值模拟. 地质学报, 87(5): 737-746. doi: 10.3969/j.issn.0001-5717.2013.05.011 [32] 林战举, 牛富俊, 罗京, 等, 2014. 青藏工程走廊热融湖塘水理化特性分析. 水科学进展, 2014, 25(2): 217-224. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201402009.htm [33] 牛富俊, 董晟, 林战举, 等, 2013. 青藏公路沿线热喀斯特湖分布特征及其热效应研究. 地球科学进展, 28(6): 695-702. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201306010.htm [34] 周幼吾, 郭东信, 邱国庆, 等, 2000. 中国冻土. 北京: 科学出版社.