Genesis of Highly Fractionated Ma'anshan Rock in Zhejiang and Anhui Provinces Constrained by U-Pb Zircon Geochronology and Geochemistry
-
摘要: 为了解由早期(伟晶、巨晶)斑状二长花岗岩、中期(细粒)花岗岩和晚期花岗(斑)岩脉组成的马鞍山杂岩体的成因, 采用SHRIMP和LA-ICP-MS锆石U-Pb法厘定其侵入时代, 年龄显示伟晶斑状二长花岗岩为132.2±1.6 Ma, 巨晶斑状二长花岗岩为127. 7±1.2 Ma, 细粒花岗岩为128.3±1.1 Ma, 花岗斑岩脉为127.4±1.8 Ma.岩石地球化学研究结果表明岩体从早到晚具有从钾玄岩系列向高钾钙碱系列演变特征, 分异演化程度逐渐变高; 斑状二长花岗岩具有高REE含量, 轻重稀土分异较为明显, 具较强负铕异常和弱右倾的配分曲线特征, 富集K、Th、U、Rb等元素, 弱亏损Ba、Sr、P、Nb、Ta、Ti等元素; 细粒花岗岩及花岗(斑)岩脉具有较低REE含量, 轻重稀土分异不明显, 具强负铕异常和"V"型配分曲线特征, 富集K、Th、U、Rb等元素, 强亏损Ba、Sr、P、Nb、Ti等元素.马鞍山岩体为浙西北-皖南地区早白垩世俯冲造山后陆内拉张作用环境下下地壳部分熔融的同源岩浆侵位结晶分异作用形成的产物, 具有高分异I型花岗岩的特征.Abstract: To understand the genesis of Ma'anshan rock composed of early period pegmatite and megacryst porphyritic adamellite, medium period fine granite and late period granite porphyry dykes, intrusion epochs are confirmed using SHRIMP and LA-ICP-MS zircon U-Pb methods. The dating shows that the pegmatite porphyritic adamellite is 132.2±1.6 Ma (MSWD=1.9, n=11), the megacrysts porphyritic adamellite 127.7 ±1.2 Ma (MSWD=1.1, n=10), the fine-grained granite 128.3±1.1 Ma (MSWD=1.7, n=10) and the granite porphyry dykes 127.4±1.8 Ma (MSWD=0.77, n=11). Rock geochemistry shows that the rock from early to late has the characteristic of alkali series shoshonite series evolving to high potassium calc (during evolution), whereas the differentiation degree gradually increases. The porphyritic adamellites have the characteristics of high ΣREE content, obvious differentiation between light rare earth and heavy rare earth elements, with a strong negative Eu anomaly and weak rightward REE distribution patterns. It is enriched in elements of K, Th, U, Rb and weakly depleted in Ba, Sr, P, Nb, Ta, Ti. The fine-grained granite and granite porphyry dyke have the characteristics of lower ΣREE content, not obvious differentiation between light and heavy rare earth elements, with a strong negative Eu anomaly, and "V"-type REE distribution patterns. It is enriched in elements of K, Th, U, Rb, strongly depleted in Ba, Sr, P, Nb, Ti. Ma'anshan rock was formed by the function of partially molten magma emplacement successively crystallization differentiation and it is the product of intracontinental extension after the Early Cretaceous subduction orogeny in Northwest Zhejiang-South Anhui, with the characteristic of highly fractionated I-type granites.
-
Key words:
- zircon U-Pb /
- geochemistry /
- petrogenesis /
- Ma'anshan rock /
- Zhejiang and Anhui border area
-
图 2 马鞍山岩体野外照片和岩相学显微照片
a.伟晶斑状二长花岗岩;b.巨晶斑状二长花岗岩;c.细粒花岗岩;d.花岗斑岩脉;e.巨晶斑状二长花岗岩中黑云母(Bt)、斜长石(Pl)、石英(Qtz);f.巨晶斑状二长花岗岩中斜长石(Pl)包裹钾长石(Kf)核生长;g.伟晶斑状二长花岗岩中黑云母(Bt)沿石英(Qtz)、斜长石(Pl)和钾长石(Kf)接触边充填结晶;h.伟晶斑状二长花岗岩中斜长石(Pl)包裹钾长石(Hbl);i.细粒花岗岩中石英(Qtz)、钾长石(Kf)和角闪石(Hbl)
Fig. 2. Field picture and microphotographs of the Ma'anshan pluton
图 8 马鞍山岩体分异判别图解(图例同图 3)
FG.分异的I型花岗岩;OGT-I、S、M型花岗岩
Fig. 8. Fractionated discrimination diagrams of the Ma'anshan pluton
图 9 马鞍山岩体La-La/Yb、SiO2-Mg#、SiO2-MgO图解(图例同图 3)
板片熔融区(Zhu et al., 2009);下地壳熔融区(Hou et al., 2004; Guo et al., 2007; Gao et al., 2010)
Fig. 9. La-La/Yb, SiO2-Mg# and SiO2-MgO relations of the Ma'anshan pluton
图 10 马鞍山岩体Y+Nb-Rb、R1-R2和Y-Sr/Y图解(图例同图 3)
Fig. 10. Y+Nb-Rb, R1-R2 and Y-Sr/Y relations of the Ma'anshan pluton
表 1 岩体主量(%)、稀土微量(10-6)化学分析数据
Table 1. Major element (%) and trace element (10-6) compositions of granites
样号 巨晶斑状二长花岗岩 伟晶斑状二长花岗岩 细粒花岗岩 花岗斑岩 D0008 D0031 D0001 D0009 D0002 D0002-3 D0007 D0030 D0034 SiO2 67.09 73.98 67.79 69.31 75.86 76.51 74.47 76.17 76.74 TiO2 0.56 0.15 0.47 0.40 0.09 0.06 0.23 0.07 0.07 Al2O3 14.90 13.61 14.63 14.75 12.12 12.55 12.73 12.74 12.66 Fe2O3 1.20 0.35 1.07 0.76 0.91 0.23 1.24 0.61 0.81 FeO 2.75 1.19 2.45 2.23 0.58 0.43 0.56 0.36 0.11 MnO 0.10 0.06 0.08 0.08 0.03 0.04 0.06 0.05 0.04 MgO 1.26 0.34 1.08 0.86 0.18 0.19 0.50 0.21 0.21 CaO 2.60 1.49 2.36 2.20 0.71 0.89 0.48 0.80 0.40 Na2O 3.53 3.68 3.34 3.51 3.61 3.48 3.74 3.25 2.90 K2O 4.64 4.57 4.68 4.91 5.08 4.68 5.00 5.22 5.14 P2O5 0.20 0.05 0.20 0.14 0.01 0.01 0.08 0.02 0.02 H2O+ 0.60 0.40 2.10 0.50 0.60 0.50 0.80 0.40 0.70 Ba 820.00 243.00 762.00 738.00 55.60 22.60 237.00 68.90 135.00 Rb 158.90 192.30 190.80 181.90 351.90 252.30 190.80 255.30 234.40 Sr 210.70 57.20 264.82 163.30 51.21 23.76 54.61 20.32 25.48 Y 37.69 58.03 39.74 42.42 35.47 32.95 28.14 56.30 48.36 Zr 237.00 124.00 210.86 195.00 52.41 64.00 122.00 87.00 100.00 Nb 18.86 18.91 13.88 18.33 11.12 13.78 18.28 22.43 26.28 Th 11.93 13.26 18.06 13.36 18.90 22.13 16.57 20.51 20.95 Hf 9.34 5.65 7.21 7.11 2.46 2.88 4.85 4.72 4.40 Ta 0.74 0.87 1.29 1.15 2.12 1.11 1.57 3.69 2.40 Li 45.90 48.32 - 52.84 - 9.49 19.13 57.29 8.09 Ga 20.00 19.20 - 20.10 - 15.60 17.40 17.00 15.50 Cd 0.11 0.07 - 0.04 - 0.02 0.04 0.08 0.01 Au 0.26 0.27 - 0.35 - 0.53 0.31 0.46 0.57 Cu 7.25 1.92 - 6.53 - 1.42 3.13 1.20 1.33 Pb 20.00 28.00 - 23.00 - 41.00 33.00 35.00 31.00 Zn 62.82 32.97 - 56.39 - 14.68 42.11 22.75 23.70 Ag 0.05 0.04 - 0.06 - 0.03 0.12 0.06 0.09 Sn 4.83 3.59 - 4.56 - 3.69 5.21 8.84 4.14 Be 3.73 4.27 - 4.37 - 5.06 2.91 7.19 2.59 Mo 0.54 0.18 - 1.13 - 0.29 0.13 0.18 0.22 Cs 7.12 6.23 - 7.21 - 5.23 2.86 15.37 3.85 W 0.50 0.06 - 7.06 - 0.42 1.75 2.39 1.12 U 3.49 3.00 - 4.32 - 10.12 4.22 7.78 5.01 La 48.18 39.23 59.36 46.17 14.60 12.90 18.21 12.06 19.95 Ce 96.00 83.10 123.59 92.91 31.86 32.32 43.76 27.52 39.27 Pr 11.60 10.30 14.40 11.10 4.75 4.64 4.64 3.87 5.71 Nd 46.98 41.19 49.93 45.48 19.34 20.23 18.68 17.04 23.92 Sm 8.92 9.46 8.81 8.97 4.58 4.82 3.87 4.99 6.02 Eu 1.37 0.56 1.44 1.29 0.35 0.27 0.46 0.25 0.42 Gd 7.52 8.33 7.95 7.66 3.84 4.20 3.54 4.80 5.80 Tb 1.13 1.55 1.21 1.20 0.78 0.76 0.68 1.05 1.13 Dy 6.55 9.33 6.95 7.15 4.95 4.65 4.29 7.38 7.15 Ho 1.29 1.88 1.30 1.43 1.02 0.99 0.91 1.66 1.52 Er 3.80 5.90 3.80 4.30 3.20 3.30 3.00 5.60 4.90 Tm 0.54 0.91 0.57 0.63 0.56 0.55 0.48 0.99 0.77 Yb 3.48 6.22 3.81 4.14 4.21 3.99 3.59 7.40 5.41 Lu 0.51 0.92 0.52 0.60 0.64 0.64 0.56 1.15 0.82 δEu 0.50 0.19 0.52 0.46 0.25 0.18 0.38 0.15 0.21 LREE 213.08 183.86 257.52 205.95 75.48 75.17 89.62 65.73 95.29 HREE 24.81 35.03 26.11 27.12 19.22 19.11 17.08 30.05 27.50 L/H 8.59 5.25 9.86 7.59 3.93 3.93 5.25 2.19 3.47 (La/Yb)N 9.92 4.53 11.20 8.00 2.49 2.32 3.64 1.17 2.64 ∑REE 237.90 218.90 283.60 233.10 94.70 94.28 106.70 95.77 122.80 注:D0001、D0002为国土资源部合肥矿产资源监督检测中心测试;其中Au单位为10-9,“-”为未分析. 表 2 马鞍山岩体锆石SHRIMP和LA-ICP-MS U-Pb测试结果
Table 2. Zircon SHRIMP and LA-ICP-MS U-Pb data of Ma'anshan rock
点号 206Pbc(%) U(10-6) Th(10-6) 232Th/238U 206Pb*(10-6) SHRIMP U-Pb同位素比值 年龄(Ma) 238U/206Pb* ±% 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U D0009伟晶斑状二长花岗岩,11个测点(不包括1、4、14)加权平均年龄132.2±1.6 Ma,MSWD=1.9 D0009-1 0.09 1 218 208 0.18 22.50 46.61 1.2 0.048 86 1.7 0.144 6 2.1 0.021 46 1.2 136.9±1.7 D0009-2 0.14 1 220 213 0.18 21.90 47.99 1.2 0.048 20 2.2 0.138 5 2.5 0.020 84 1.2 133.0±1.6 D0009-3 —— 1 094 120 0.11 19.80 47.35 1.2 0.048 98 1.6 0.142 6 2.0 0.021 12 1.2 134.7±1.6 D0009-4 —— 1 635 265 0.17 30.40 46.23 1.2 0.049 18 1.3 0.146 7 1.8 0.021 63 1.2 138.0±1.7 D0009-5 0.46 500 144 0.30 8.76 49.26 1.3 0.046 20 3.3 0.129 3 3.6 0.020 30 1.3 129.6±1.7 D0009-6 0.44 971 349 0.37 17.40 48.28 1.2 0.046 50 2.3 0.132 9 2.7 0.020 71 1.2 132.1±1.6 D0009-7 0.48 411 138 0.35 7.27 48.78 1.4 0.045 80 6.4 0.129 4 6.6 0.020 50 1.4 130.8±1.8 D0009-8 —— 242 97 0.41 4.32 47.91 1.4 0.051 60 3.3 0.148 5 3.6 0.020 87 1.4 133.2±1.9 D0009-9 —— 580 229 0.41 10.10 49.13 1.3 0.048 70 2.3 0.136 7 2.6 0.020 36 1.3 129.9±1.6 D0009-10 0.76 402 148 0.38 7.02 49.54 1.7 0.044 60 4.4 0.124 0 4.7 0.020 19 1.7 128.8±2.1 D0009-11 0.44 859 230 0.28 15.70 47.19 1.3 0.046 60 4.5 0.136 0 4.7 0.021 19 1.3 135.2±1.7 D0009-12 0.56 723 186 0.27 12.70 49.19 1.3 0.047 70 3.1 0.133 7 3.4 0.020 33 1.3 129.7±1.6 D0009-13 —— 2 041 306 0.15 37.20 47.14 1.2 0.049 28 1.8 0.144 1 2.2 0.021 21 1.2 135.3±1.6 D0009-14 0.36 340 101 0.31 19.40 15.08 1.3 0.053 80 2.2 0.492 0 2.5 0.066 32 1.3 414.0±5.1 D0008巨晶斑状二长花岗岩,10个测点(不包括1、2、3、9)加权平均年龄127.7±1.2 Ma,MSWD=1.1 D0008-1 0.03 1 819 448 0.25 33.40 46.74 1.2 0.047 62 1.4 0.140 5 1.8 0.021 39 1.2 136.5±1.6 D0008-2 0.37 1 337 210 0.16 24.10 47.88 1.3 0.046 87 1.5 0.135 0 2.0 0.020 88 1.3 133.2±1.7 D0008-3 0.11 2 886 499 0.18 54.10 45.89 1.2 0.047 01 1.1 0.141 2 1.6 0.021 79 1.2 139.0±1.6 D0008-4 0.34 400 131 0.34 6.83 50.43 1.3 0.045 80 5.6 0.125 1 5.8 0.019 83 1.3 126.6±1.7 D0008-5 1.62 114 38 0.34 1.92 51.82 1.8 0.042 90 12.0 0.114 0 12.0 0.019 30 1.8 123.2±2.1 D0008-6 0.85 326 107 0.34 5.65 49.97 1.4 0.043 50 5.8 0.120 1 5.9 0.020 01 1.4 127.7±1.8 D0008-7 —— 260 110 0.44 4.37 51.02 1.4 0.052 60 5.4 0.142 0 5.6 0.019 60 1.4 125.1±1.8 D0008-8 0.05 256 123 0.50 4.46 49.38 1.5 0.049 20 9.2 0.137 0 9.3 0.020 25 1.5 129.2±1.9 D0008-9 —— 758 153 0.21 13.80 46.99 1.3 0.050 80 3.1 0.149 0 3.4 0.021 28 1.3 135.8±1.7 D0008-10 —— 454 112 0.26 7.90 49.34 1.3 0.053 10 2.4 0.148 3 2.8 0.020 27 1.3 129.4±1.7 D0008-11 —— 155 63 0.42 2.64 50.30 2.6 0.051 20 4.2 0.140 2 5.0 0.019 86 2.6 126.8±3.3 D0008-12 0.30 100 102 1.05 1.75 49.30 1.8 0.052 50 9.8 0.147 0 9.9 0.020 28 1.8 129.4±2.3 D0008-13 0.91 208 92 0.46 3.63 49.69 1.9 0.044 00 23.0 0.121 0 23.0 0.020 13 1.9 128.5±2.4 D0008-14 0.86 225 144 0.66 3.98 48.93 1.5 0.043 90 6.6 0.123 6 6.8 0.020 44 1.5 130.4±1.9 D0002-3细粒花岗岩,10个测点(不包括1、4、6、8)加权平均年龄128.3±1.1 Ma,MSWD=1.7 D0002-3-1 0.36 286 267 0.97 5.34 46.19 1.4 0.048 60 10.0 0.145 0 10.0 0.021 65 1.4 138.1±1.9 D0002-3-2 1.05 520 158 0.31 9.01 50.17 1.4 0.043 30 13.0 0.119 0 13.0 0.019 93 1.4 127.2±1.7 D0002-3-3 0.45 536 294 0.57 9.40 49.21 1.2 0.044 60 5.3 0.125 1 5.5 0.020 32 1.2 129.7±1.6 D0002-3-4 1.20 1 240 497 0.41 22.90 47.10 1.2 0.045 40 4.8 0.133 0 4.9 0.021 23 1.2 135.4±1.5 D0002-3-5 0.38 1 217 342 0.29 20.90 50.33 1.3 0.046 10 3.0 0.126 4 3.3 0.019 87 1.3 126.8±1.7 D0002-3-6 0.23 1 863 461 0.26 33.90 47.27 1.1 0.048 16 1.9 0.140 5 2.2 0.021 16 1.1 135.0±1.5 D0002-3-7 2.61 1 067 243 0.23 19.30 48.71 1.2 0.042 20 9.2 0.120 0 9.3 0.020 53 1.2 131.0±1.6 D0002-3-8 0.58 114 61 0.55 4.86 20.26 1.7 0.058 70 10.0 0.400 0 10.0 0.049 35 1.7 310.5±5.1 D0002-3-9 0.10 866 183 0.22 15.10 49.18 1.2 0.049 30 3.2 0.138 1 3.4 0.020 33 1.2 129.8±1.5 D0002-3-10 1.35 166 52 0.32 2.86 50.64 1.5 0.036 20 9.0 0.098 6 9.2 0.019 75 1.5 126.1±1.9 D0002-3-11 0.41 889 267 0.31 15.40 49.82 1.2 0.046 20 3.4 0.127 9 3.6 0.020 07 1.2 128.1±1.5 D0002-3-12 2.80 161 114 0.73 2.83 50.07 1.8 0.034 40 25.0 0.095 0 25.0 0.019 97 1.8 127.5±2.3 D0002-3-13 5.49 248 81 0.34 4.67 48.31 1.8 0.029 00 42.0 0.081 0 42.0 0.020 70 1.8 132.1±2.3 D0002-3-14 0.88 440 137 0.32 7.40 51.60 1.5 0.045 50 8.7 0.122 0 8.9 0.019 38 1.5 123.7±1.9 点号 U(10-6) Th(10-6) Th/U LA-ICP-MS U-Pb同位素比值 年龄(Ma) 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th D0034花岗斑岩脉,11个测点(不包括4,6~10)加权平均年龄127.4±1.8 Ma,MSWD=0.77 D0034-1 343 240 0.70 0.048 30±0.005 49 0.135 56±0.015 31 0.020 36±0.000 43 0.007 23±0.001 86 114±210 129±14 130±3 146±37 D0034-2 406 274 0.68 0.047 86±0.005 52 0.131 34±0.015 06 0.019 91±0.000 46 0.004 18±0.000 67 92±210 125±14 127±3 84±13 D0034-3 671 513 0.76 0.049 49±0.005 94 0.135 69±0.016 05 0.019 88±0.000 56 0.004 14±0.000 98 171±213 129±14 127±4 84±20 D0034-4 690 1 118 1.62 0.112 97±0.004 46 0.327 33±0.012 77 0.021 02±0.000 42 0.005 40±0.000 68 1 848±42 288±10 134±3 109±14 D0034-5 325 175 0.54 0.047 35±0.004 85 0.130 57±0.013 34 0.020 00±0.000 38 0.004 46±0.000 89 67±192 125±12 128±2 90±18 D0034-6 179 166 0.93 0.048 20±0.010 54 0.141 60±0.030 77 0.021 30±0.000 64 0.005 65±0.001 28 109±341 134±27 136±4 114±26 D0034-7 221 197 0.89 0.050 30±0.007 25 0.151 59±0.021 74 0.021 86±0.000 51 0.006 98±0.001 24 209±271 143±19 139±3 141±25 D0034-8 219 204 0.93 0.050 03±0.012 05 0.147 13±0.035 12 0.021 32±0.000 77 0.006 83±0.002 56 196±380 139±31 136±5 138±51 D0034-9 693 634 0.92 0.047 54±0.003 87 0.144 32±0.011 64 0.022 02±0.000 48 0.003 96±0.000 66 76±137 137±10 140±3 80±13 D0034-10 836 669 0.80 0.047 56±0.002 09 0.141 20±0.006 25 0.021 53±0.000 34 0.006 12±0.000 99 77±70 134±6 137±2 123±20 D0034-11 264 196 0.74 0.047 90±0.007 36 0.135 96±0.020 73 0.020 59±0.000 51 0.010 18±0.002 69 94±261 129±19 131±3 205±54 D0034-12 221 159 0.72 0.048 86±0.006 87 0.134 96±0.018 88 0.020 03±0.000 43 0.009 45±0.002 49 141±256 129±17 128±3 190±50 D0034-13 144 101 0.70 0.047 94±0.012 44 0.135 72±0.035 03 0.020 53±0.000 66 0.011 18±0.003 19 96±397 129±31 131±4 225±64 D0034-14 422 353 0.84 0.047 49±0.004 34 0.128 44±0.011 67 0.019 61±0.000 38 0.009 02±0.002 30 74±165 123±11 125±2 181±46 D0034-15 195 172 0.88 0.047 76±0.011 67 0.132 92±0.032 24 0.020 19±0.000 69 0.010 74±0.002 95 87±368 127±29 129±4 216±59 D0034-16 122 84 0.69 0.047 89±0.014 29 0.129 63±0.038 48 0.019 63±0.000 68 0.008 28±0.002 70 94±447 124±35 125±4 167±54 D0034-17 272 170 0.63 0.048 60±0.010 18 0.126 71±0.026 31 0.018 91±0.000 62 0.007 69±0.002 32 129±330 121±24 121±4 155±47 表 3 浙西北及邻区燕山期侵入岩时代(锆石U-Pb法)
Table 3. The eras of intrusive rocks in Northwest Zhejiang and adjacent area
岩体位置 岩性 成岩年代(Ma) 来源文献 岩体位置 岩性 成岩年代(Ma) 来源文献 浙西北 常山兰花坞铜矿区 花岗斑岩 172±3.0 ① 浙西北 莫干山岩体 花岗岩 128.1±2.1 章邦桐等,2012 斑状花岗闪长岩 162±1.0 常山岩前钨锡矿区 二长花岗岩 127±2.0 ① 开化桐村矿 花岗斑岩 167.6~155.6 邱骏挺等,2011 开化桐村矿 花岗斑岩 168.7±2.3 ① 银山多金属矿区 黄石潭花岗岩 126±2.0 厉子龙等,2013;Li et al., 2013 开化桐村矿 花岗斑岩 166±2.0~160.3±2.6 ① 夏色岭钨矿区 花岗岩 126.9±1.7 黄国成等,2012 开化桐村矿 二长花岗岩 165.7±2.1 ① 白菊花尖地区 花岗岩 126±3.0 Wong et al., 2009 建德岭后矿区 花岗闪长斑岩 162.9±1.9 ① 千亩田钨铍矿区 花岗岩 125.5±1.1、123.5±2.3 黄国成等,2012 漓渚矿区 栅溪闪长岩 150.1±2.6 顾明光等,2011 九里岗岩体 隐伏岩体 124±1.0 厉子龙等,2013 广山花岗岩 147.2±1.7 顾明光等,2011 神功村 二长花岗斑岩脉 117.7±2.7 王剑等,2003 闲林埠矿区 花岗闪长岩 151.8±2.2 ② 皖东南 宁国竹溪岭地区 花岗岩 142.0~138.7 陈雪霏等,2013 开岭脚、里陈家 花岗闪长岩 151±3、148±2 汪建国等,2010 铜陵凤凰山岩体 石英二长闪长岩、花岗闪长岩 141.0~139.4 瞿泓滢等,2010 结蒙岩体 花岗闪长岩 148±1.0 厉子龙等,2013; Li et al., 2013b 旌德岩体 花岗闪长岩 141.0~139.7 张俊杰等,2012 月山复式岩体 (石英)闪长岩 139和123 许逢明等,2012 上台门铅锌矿 花岗闪长岩 146.8±2.1 ② 牯牛降岩体 花岗岩 130.1 谢建成等,2012a 木瓜岩体 花岗斑岩 142±1.0 厉子龙等,2013 庐江-枞阳地区 花岗岩 126~124 范裕等,2008 安吉港口矿区 黑云母二长花岗岩 141±1.4 唐燕文等,2013 赣东北 德兴地区 花岗闪长斑岩 171±3.0 王强等,2004 安吉港口矿区 钾长花岗岩 138.1±1.0 唐燕文等,2013 永平铜矿区 花岗斑岩 160±2.3和135±7.4 丁昕等,2005 安吉港口矿区 花岗闪长岩 137±1.8 唐燕文等,2013 武山铜矿区 花岗闪长斑岩 145±3.9和121±2.5 郭博然等,2013 安吉港口矿区 细粒花岗岩 134.5±1.6 谢玉玲等,2012 大铜坑钼矿区 斑状花岗岩 135.1±1.9 ② 卧龙谷岩体 花岗岩 133±1.0 张招崇等,2007 淳安县铜山矿区儒洪岩体 (二长)花岗岩 132±1 ① 三清山地区 花岗岩 123±2.2和115.6±2 赵鹏等,2010 (二长)花岗岩 129 厉子龙等,2013;Li et al., 2013 鹅湖岩体 花岗岩 121.7±2.9 常山里山岭铜矿区 (正长)花岗斑岩 131±2 ① 注:①江绍拼合带中西段铜多金属矿床区域成矿规律研究与成矿预测.中国地质大学(北京),浙江省第三地质大队,浙江省核工业二六九大队,2013.
②浙江1∶5万临安镇、万市、余杭镇、富阳县幅区调地质调查报告.浙江省地质调查院,2014. -
[1] Bai, D.Y., Chen, J.C., Ma, T.Q., et al., 2005. Geochemical Characteristics and Tectonic Setting of Qitianling A-Type Granitic Pluton in Southeast Hunan. Acta Petrologica et Mineralogica, 24(4): 255-272(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200504001.htm [2] Chen, C., Lü, X.B., Cao, X.F., et al., 2013. Geochronology, Geochemistry and Geological Significance of Late Carboniferous-Early Permian Granites in Kumishi Area, Xinjiang. Earth Science—Journal of China University of Geosciences, 38(2): 218-232(in Chinese with English abstract). doi: 10.3799/dqkx.2013.023 [3] Chen, P.R., Hua, R.M., Zhang, B.T., et al., 2002. Early Yanshanian Post-Orogenic Granitoids in the Nanling Region: Petrological Constraints and Geodynamic Settings. Science in China (Series D), 45(8): 756-768. doi: 10.1007/BF02878432 [4] Chen, S.Q., 2011. Discussion on the Yanshan Epoch Rock Characteristics and Ore-Forming Background in Zhejiang Kaihua Region(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [5] Chen, X.F., Wang, Y.G., Sun, W.D., et al., 2013. Zircon U-Pb Chronology, Geochemistry and Genesis of the Zhuxiling Granite in Ningguo, Southern Anhui. Acta Geologica Sinica, 87(11): 1662-1678(in Chinese with English abstract). http://www.researchgate.net/publication/313550482_Zircon_U-Pb_chronology_geochemistry_and_genesis_of_the_Zhuxiling_granite_in_Ningguo_Southern_Anhui [6] Collins, W.J., Richards, S.W., 2007. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology, 36(7): 559-562. doi: 10.1130/G24658A.1 [7] Ding, X., Jiang, S.Y., Ni, P., et al., 2005. Zircon SIMS U-Pb Geochronology of Host Granitoids in Wushan and Yongping Copper Deposits, Jiangxi Province. Geological Journal of China Universities, 11(3): 383-389(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253567213.html [8] Dong, S.W., Zhang, Y.Q., Long, C.X., et al., 2007. Jurassic Tectonic Revolution in China and New Interpretation of the Yanshan Movement. Acta Geologica Sinica, 81(11): 1449-1461(in Chinese with English abstract). [9] Fan, Y., Zhou, T.F., Yuan, F., et al., 2008. LA-ICP-MS Zircon U-Pb Ages of the A-Type Granites in the Lu-Zong (Lujiang-Zongyang) Area and Their Geological Significances. Acta Petrologica Sinica, 24(8): 1715-1724(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200808005.htm [10] Feng, Z.H., Wang, C.Z., Wang, B.H., 2009. Granite Magma Ascent and Emplacement Mechanisms and Their Relation to Mineralization Process. Journal of Guilin University of Technology, 29(2): 183-194(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-guilin-university-technology_thesis/020128520677.html [11] Gao, Y.F., Yang, Z.S., Santosh, M., et al., 2010. Adakitic Rocks from Slab Melt-Modified Mantle Sources in the Continental Collision Zone of Southern Tibet. Lithos, 119(3-4): 651-663. doi: 10.1016/j.lithos.2010.08.018 [12] Griffin, W.L., Powell, W.J., Pearson, N.J., et al., 2008. GLITTER: Data Reduction Software for Laser Ablation ICP-MS. In: Sylvester, P., ed., Laser Ablation-ICP-MS in the Earth Sciences. Current Practices and Outstanding Issues: Mineralogical Association of Canada Short Course, 40: 308-311. [13] Gu, M.G., Feng, L.X., Hu, Y.H., et al., 2011. LA-ICP-MS U-Pb Dating of Zircons from Guangshan and Zhaxi Plutons in Shaoxing Area, Zhejiang Province: Constraint on the Ore-Forming Epoch of the Lizhu Iron Ore Deposit. Geological Bulletin of China, 30(8): 1212-1219(in Chinese with English abstract). http://www.researchgate.net/publication/293344466_LA-ICP-MS_U-Pb_dating_of_zircons_from_Guangshan_and_Zhaxi_plutons_in_Shaoxing_area_Zhejiang_Province_constraint_on_the_ore-forming_epoch_of_the_Lizhu_iron_ore_deposit [14] Guo, B.R., Liu, S.W., Yang, P.T., et al., 2013. Petrology, Geochemistry and Petrogenesis of Wolonggu Granites and Tongchang Granodioritic Porphyries: Constraints on Copper Metallogenic Geological Settings in Northeastern Jiangxi Province. Geological Bulletin of China, 32(7): 1035-1046(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201307008.htm [15] Guo, W.M., Lu, J.J., Jiang, S.Y., et al., 2013. Chronology, Hf Isotopes, Geochemistry, and Petrogenesis of the Magmatic Rocks in the Shizishan Ore Field of Tongling, Anhui Province. Science China: Earth Sciences, 56(6): 993-1013. doi: 10.1007/s11430-013-4589-2 [16] Guo, Z.F., Wilson, M., Liu, J.Q., 2007. Post-Collisional Adakites in South Tibet: Products of Partial Melting of Subduction-Modified Lower Crust. Lithos, 96(1-2): 205-224. doi: 10.1016/j.lithos.2006.09.011 [17] Hoskin, P.W.O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. , 53(1): 27-62. doi: 10.2113/0530027 [18] Hou, Z.Q., Gao, Y.E., Qu, X.M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220 (1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X [19] Huang, G.C., Wang, D.H., Wu, X.Y., 2012a. Characteristics and LA-ICP-MS Zircon U-Pb Geochronology Study of Metallogenic Intrusion in the Xiaseling Tungsten Deposit in Lin'an, Zhejiang Province. Rock and Mineral Analysis, 31(5): 915-921(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS201205029.htm [20] Huang, G.C., Wang, D.H., Wu, X.Y., 2012b. LA-ICP-MS Zircon U-Pb Dating of the Granite from the Qianmutian Tungsten-Beryllium Mine in Lin'an, Zhejiang Province and Its Significance in Regional Exploration. Geotectonica et Metallogenia, 36(3): 392-398(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201203013.htm [21] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In-Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1-2): 47-69. doi: 10.1016/j.chemgeo.2004.06.017 [22] Jia, X.H., Wang, X.D., Yang, W.Q., et al., 2014. The Early Jurassic A-Type Granites in Northern Guangxi, China: Petrogenesis and Implications. Earth Science—Journal of China University of Geosciences, 39(1): 21-36(in Chinese with English abstract). doi: 10.3799/dqkx.2014.003 [23] King, P.L., White, A.J.R., Chappell, B.W., 1997. Characterization and Origin of Aluminous A Type Granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. , 38(3): 371-391. doi: 10.1093/petroj/38.3.371 [24] Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contrib. Mineral. Petrol. , 157(3): 383-409. doi: 10.1007/s00410-008-0341-x [25] Li, L.L., Zhou, H.W., Chen, Z.H., et al., 2013. Comparison of A-Type Granites from Taimushan and Gushan Regions in Fujian Province and Their Geodynamic Significance. Geoscience, 27(3): 509-524(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201303002.htm [26] Li, X.H., Chen, Z.G., Liu, D.Y., et al., 2003. Jurassic Gabbro-Granite-Syenite Suites from Southern Jiangxi Province, SE China: Age, Origin, and Tectonic Significance. International Geological Review, 45(10): 898-921. doi: 10.2747/0020-6814.45.10.898 [27] Li, X.H., Li, W.X., Li, Z.X., 2007a. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885. doi: 10.1007/s11434-007-0259-0 [28] Li, X.H., Li, Z.X., Li, W.X., et al., 2007b. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1-2): 186-204. doi: 10.1016/j.lithos.2006.09.018 [29] Li, Y.J., Wei, J.H., Yao, C.L., et al., 2010. Genetic Relationship of the Huaixi Copper-Gold Deposit and the Caomen Alkaline Granite, Southeastern Zhejiang Province, China: Constraint from Geochronologies. Earth Science—Journal of China University of Geosciences, 35(4): 585-596(in Chinese with English abstract). doi: 10.3799/dqkx.2010.074 [30] Li, Z.L., Zhou, J., Mao, J.R., et al., 2013a. Age and Geochemistry of the Granitic Porphyry from the Northwestern Zhejiang Province, SE China, and Its Geological Significance. Acta Petrologica Sinica, 29(10): 3607-3622(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201310023.htm [31] Li, Z.L., Zhou, J., Mao, J.R., et al., 2013b. Zircon U-Pb Geochronology and Geochemistry of Two Episodes of Granitoids from the Northwestern Zhejiang Province, SE China: Implication for Magmatic Evolution and Tectonic Transition. Lithos, 179: 353-363. doi: 10.1016/j.lithos.2013.07.014 [32] Liu, D.Y., Jian, P., Kröner, A., et al., 2006. Dating of Prograde Metamorphic Events Deciphered from Episodic Zircon Growth in Rocks of the Dabie-Sulu UHP Complex, China. Earth Planet. Sci. Lett. , 250(3-4): 650-666. doi: 10.1016/j.epsl.2006.07.043 [33] MaCpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth Planet. Sci. Lett. , 243(3-4): 581-593. doi: 10.1016/j.epsl.2005.12.034 [34] Mao, J.R., Yutaka, T., Li, Z.L., et al., 2009. Correlation of Meso-Cenozoic Tectono-Magmatism between SE China and Japan. Geological Bulletin of China, 28(7): 844-856(in Chinese with English abstract). http://www.researchgate.net/publication/279603536_Correlation_of_Meso-Cenozoic_tectono-magmatism_between_SE_China_and_Japan [35] Qian, H., Xia, J., 2010. Discovery of Tungsten-Molybdenum Orebodies and Analysis of Ore-Prospecting Potential at Wazishan, Jingde County in South Anhui Province. China Mining Magazine, 19(4): 100-104(in Chinese with English abstract). http://www.researchgate.net/publication/288861266_Discovery_of_tungsten-molybdenum_orebodies_and_analysis_of_ore-prospecting_potential_at_Wazishan_Jingde_county_in_south_Anhui_province [36] Qin, Y., Wang, D.H., Wu, L.B., et al., 2010. Zircon SHRIMP U-Pb Dating of the Mineralized Porphyry in the Dongyuan W Deposit in Anhui Province and Its Geological Significance. Acta Geologica Sinica, 84(4): 479-484(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201004003.htm [37] Qiu, J.S., Wang, D.Z., McInnes, B.I.A., 1999. Geochemistry and Petrogenesis of the I- and A Type Composite Granite Masses in the Coastal Area of Zhejiang and Fujian Province. Acta Petrologica Sinica, 15(2): 237-246(in Chinese with English abstract). http://www.oalib.com/paper/1471246 [38] Qiu, J.S., Xiao, E., Hu, J., et al., 2008. Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province: Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes. Acta Petrologica Sinica, 24(11): 2468-2484(in Chinese with English abstract). http://www.researchgate.net/publication/263693089_Petrogenesis_of_highly_fractionated_I-type_granites_in_the_coastal_area_of_northeastern_Fujian_Province_Constraints_from_zircon_U-Pb_geochronology_geochemistry_and_Nd-Hf_isotopes [39] Qiu, J.T., Yu, X.Q., Zhang, D.H., et al., 2011. LA-ICP-MS Zircon U-Pb Dating of the Tongcun Porphyry in Kaihua County, Western Zhejiang Province, and Its Geological Significance. Geological Bulletin of China, 30(9): 1360-1368(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201109004.htm [40] Qu, H.Y., Pei, R.F., Li, J.W., et al., 2010. SHRIMP U-Pb Dating of Zircon from the Fenghuangshan Quartz Monzodiorite and Granodiorite in Tongling Area, Anhui Province and Its Geological Implication. Journal of Jilin University(Earth Science Edition), 40(3): 581-590(in Chinese with English abstract). http://www.oalib.com/paper/1558172 [41] Tang, Y.W., Xie, Y.L., Li, Y.X., et al., 2013. LA-ICP-MS U-Pb Ages, Geochemical Characteristics of the Zircons from Wushanguan Complex Body in Anji Mining Area, Northwestern Zhejiang and Their Geological Significances. Geological Review, 59(4): 702-715(in Chinese with English abstract). http://www.researchgate.net/publication/313550363_LA-ICP-MS_U-Pb_Ages_Geochemical_Characteristics_of_the_Zircons_from_Wushanguan_Complex_Body_in_Anji_Mining_Area_Northwestern_Zhejiang_and_Their_Geological_Significances [42] Turner, S.P., Foden, J.D., Morrison, R.S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magama: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X [43] Wang, J., Bao, C.M., Gao, Y.H., et al., 2003. Zircon SHRIMP U-Pb Dating of Monzogranite-Porphyry Dikes in Shengongcun, Northern Zhejiang, and Its Geological Implications. Geological Bulletin of China, 22(9): 729-732(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252293680.html [44] Wang, J.G., Wang, L.W., Chen, X.Y., et al., 2010. SHRIMP U-Pb Ages of Zircons from Kailingjiao and Lichenjia Granodiorites in Western Zhejiang and Their Geological Implications. Geology in China, 37(6): 1559-1565(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201006003.htm [45] Wang, Q., Zhao, Z.H., Jian, P., et al., 2004. SHRIMP Zircon Geochronology and Nd-Sr Isotopic Geochemistry of the Dexing Granodiorite Porphyries. Acta Petrologica Sinica, 20(2): 315-324(in Chinese with English abstract). http://www.researchgate.net/publication/279655198_SHRIMP_zircon_geochronology_and_Nd-Sr_isotopic_geochemistry_of_the_Dexing_granodiorite_porphyries [46] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contrib. Mineral. Petrol. , 95(4): 407-419. doi: 10.1007/BF00402202 [47] Wolf, M.B., London, D., 1994. Apatite Dissolution into Peraluminous Haplogranitic Melts: An Experimental Study of Solubilities and Mechanism. Geochim. Cosmochim. Acta, 58(9): 4127-4145. doi: 10.1016/0016-7037(94)90269-0 [48] Wong. J., Sun, M., Xing, G.E., et al., 2009. Geochemical and Zircon U-Pb and Hf Isotopic Study of the Baijuhuajian Metaluminous A-Type Granite: Extension at 125-100 Ma and Its Tectonic Significance for South China. Lithos, 112(3-4): 289-305. doi: 10.1016/j.lithos.2009.03.009 [49] Wu, F.Y., Jahn, B.M., Wilder, S.A., et al., 2003. Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 66(3-4): 241-273. doi: 10.1016/S0024-4937(02)00222-0 [50] Xie, J.C., Chen, S., Rong, W., et al., 2012a. Geochronology, Geochemistry and Tectonic Significance of Guniujiang A-Type Granite in Anhui Province. Acta Petrologica Sinica, 28(12): 4007-4020(in Chinese with English abstract). http://www.researchgate.net/publication/236348059_Geochronology_geochemistry_and_tectonic_significance_of_Guniujiang_A-type_granite_in_Anhui_Province [51] Xie, J.C., Chen, S., Sun, W.D., et al., 2012b. Geochemistry of Early Cretaceous Adakitic Rocks in Tongling Region of Anhui Province: Constraints for Rock- and Ore-Forming. Acta Petrologica Sinica, 28(10): 3181- 3196(in Chinese with English abstract). [52] Xie, Y.L., Tang, Y.W., Li, Y.X., et al., 2012c. Petrochemistry, Chronology and Ore-Forming Geological Significance of Fine Crystalline Granite in Anji Polymetallic Deposit of Zhejiang Province. Mineral Deposits, 31(4): 891-902(in Chinese with English abstract). [53] Xing, G.F., Lu, Q.D., Chen, R., et al., 2008. Study on the Ending Time of Late Mesozoic Tectonic Regime Transition in South China—Comparing to the Yanshan Area in North China. Acta Geologica Sinica, 82(4): 451-463(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200804003.htm [54] Xu, F.M., Du, Y.S., Wang, G.W., et al., 2012. Zircon SHRIMP U-Pb Ages, Geochemical Characteristics and Geological Implication of Yueshan Complex, Anhui Province, China. J. Mineral Petrol. , 32(1): 61-66(in Chinese with English abstract). http://www.researchgate.net/publication/291104724_Zircon_shrimp_U-Pb_agesgeochemical_characteristics_and_geological_implication_of_yueshang_complexanhui_provinceChina [55] Zhang, B.T., Wang, K.X., Ling, H.F., et al., 2012. Zircon U-Pb and Whole-Rock Rr-Sr Chronology, Sr-Nd-O Isotopes and Petrogenesis of the Moganshan Granite Pluton in the Zhejiang Province. Bulletin of Mineralogy, Petrology and Geochemistry, 31(4): 347-353(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201204005.htm [56] Zhang, J.F., Xie, H.S., Xu, X.M., et al., 2013. Geological and Geochemical Characteristics and Tectonic and Prospecting Significance of the Shanxi-Guangshan Intrusions in Lizhu Area, Zhejiang Province. Geology in China, 40(2): 403-413(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201302005.htm [57] Zhang, J.J., Wang, G.J., Yang, X.Y., et al., 2012. The Petrogenesis of the Jingde Granodiorite and Its MMEs: Constraints from Geochemistry, Zircon U-Pb Dating and Hf Isotopic Compositions. Acta Petrologica Sinica, 28(12): 4047-4063(in Chinese with English abstract). [58] Zhang, Y.Q., Xu, X.B., Jia. D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901033.htm [59] Zhang, Z.C., Jian, P., Wei, H.R., 2007. SHRIMP Ages, Geology, Geochemistry and Petrogenetic Type of Granites from the Sanqingshan Geopark, Jiangxi Province. Geological Review, 53(Suppl. ): 28-40(in Chinese with English abstract). http://www.researchgate.net/publication/313094336_SHRIMP_ages_geology_geochemistry_and_petrogenetic_type_of_granites_from_the_Sanqingshan_Geopark_Jiangxi_Province [60] Zhao. P., Jiang, Y.H., Liao, S.Y., et al., 2010. SHRIMP Zircon U-Pb Age, Sr-Nd-Hf Isotopic Geochemistry and Petrogenesis of the Ehu Pluton in Northeastern Jiangxi Province. Geological Journal of China Universities, 16(2): 218-225(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201002009.htm [61] Zhou, J., Jiang, Y.H., Ge, W.Y., 2014. High Sr/Y Jingde Pluton in the Eastern Jiangnan Orogen, South China: Formation Mechanism and Tectonic Implications. Acta Geologica Sinica, 88(1): 53-62(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201401005.htm [62] Zhou, J., Jiang, Y.H., Zeng, Y., et al., 2013. Zircon U-Pb Age and Sr, Nd, Hf Isotope Geochemistry of Jingde Pluton in Eastern Jiangnan Orogen, South China. Geology in China, 40(5): 1379-1391(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252104143.html [63] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009a. Petrogenesis of Highly Fractionated I-Type Granites in the Chayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China (Ser. D), 52(9): 1223-1239. doi: 10.1007/s11430-009-0132-x [64] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009b. Early Cretaceous Subduction-Related Adakite-like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3): 298-309. doi: 10.1016/j.jseaes.2008.05.003 [65] Zhu, J.C., Wang, R.C., Zhang, P.H., et al., 2009c. Zircon U-Pb Geochronological Framework of Qitianling Granite Batholith, Middle Part of Nanling Range, South China. Science in China (Ser. D), 52(9): 1279-1294. doi: 10.1007/s11430-009-0154-4 [66] 柏道远, 陈建超, 马铁球, 等, 2005. 湘东南骑田岭岩体A型花岗岩的地球化学特征及其构造环境. 岩石矿物学杂志, 24(4): 255-272. doi: 10.3969/j.issn.1000-6524.2005.04.002 [67] 陈超, 吕新彪, 曹晓峰, 等, 2013. 新疆库米什地区晚石炭世-早二叠世花岗岩年代学、地球化学及其地质意义. 地球科学——中国地质大学学报, 38(2): 218-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201302004.htm [68] 陈帅奇, 2011. 浙西开化地区燕山期岩体特征及其成矿背景研究(硕士学位论文). 北京: 中国地质大学. [69] 陈雪霏, 汪应庚, 孙卫东, 等, 2013. 皖南宁国竹溪岭地区花岗岩锆石U-Pb年代学及地球化学及其成因研究. 地质学报, 87(11): 1662-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311003.htm [70] 丁昕, 蒋少涌, 倪培, 等, 2005. 江西武山和永平铜矿含矿花岗质岩体锆石SIMS U-Pb年代学. 高校地质学报, 11(3): 383-389. doi: 10.3969/j.issn.1006-7493.2005.03.009 [71] 董树文, 张岳桥, 龙长兴, 等, 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449-1461. doi: 10.3321/j.issn:0001-5717.2007.11.001 [72] 范裕, 周涛发, 袁峰, 等, 2008. 安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义. 岩石学报, 24(8): 1715-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808005.htm [73] 冯佐海, 王春增, 王葆华, 2009. 花岗岩侵位机制与成矿作用. 桂林工学院学报, 29(2): 183-194. doi: 10.3969/j.issn.1674-9057.2009.02.003 [74] 顾明光, 冯立新, 胡艳华, 等, 2011. 浙江绍兴地区广山-栅溪岩体LA-ICP-MS锆石U-Pb定年: 对漓诸铁矿成矿时代的限定. 地质通报, 30(8): 1212-1219. doi: 10.3969/j.issn.1671-2552.2011.08.005 [75] 郭博然, 刘树文, 杨朋涛, 等, 2013. 江西卧龙谷花岗岩和铜厂花岗闪长斑岩的地球化学特征及成因——对赣东北地区铜矿成矿地质背景的制约. 地质通报, 32(7): 1035-1046. doi: 10.3969/j.issn.1671-2552.2013.07.009 [76] 黄国成, 王登红, 吴小勇, 2012a. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 31(5): 915-921. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201205029.htm [77] 黄国成, 王登红, 吴小勇, 2012b. 浙江临安千亩田钨铍矿区花岗岩锆石LA-ICP-MS U-Pb年龄及对区域找矿的意义. 大地构造与成矿学, 36(3): 392-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201203013.htm [78] 贾小辉, 王晓地, 杨文强, 等, 2014. 桂北圆石山早侏罗世A型花岗岩的岩石成因及意义. 地球科学——中国地质大学学报, 39(1): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201401003.htm [79] 李良林, 周汉文, 陈植华, 等, 2013a. 福建太姥山地区和鼓山地区A型花岗岩对比及其地球动力学意义. 现代地质, 27(3): 509-524. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201303002.htm [80] 李艳军, 魏俊浩, 姚春亮, 等, 2010. 浙东南怀溪铜金矿床与曹门碱性花岗岩体成因关系的年代学制约. 地球科学——中国地质大学学报, 35(4): 585-596. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004012.htm [81] 厉子龙, 周静, 毛建仁, 等, 2013. 浙西北木瓜燕山期花岗斑岩的定年、地球化学特征及其地质意义. 岩石学报, 29(10): 3607-3622. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310023.htm [82] 毛建仁, 高桥浩, 厉子龙, 等, 2009. 中国东南部与日本中-新生代构造-岩浆作用对比研究. 地质通报, 28(7): 844-856. doi: 10.3969/j.issn.1671-2552.2009.07.004 [83] 钱辉, 夏军, 2010. 皖南旌德凹子山钨钼矿的发现及找矿潜力分析. 中国矿业, 19(4): 100-104. doi: 10.3969/j.issn.1004-4051.2010.04.029 [84] 秦燕, 王登红, 吴礼彬, 等, 2010. 安徽东源钨矿含矿斑岩中的锆石SHRIMP U-Pb年龄及其地质意义. 地质学报, 84(4): 479-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004003.htm [85] 邱检生, 王德滋, McInnes, B.I.A., 1999. 浙闽沿海地区I型-A型复合花岗岩体的地球化学及成因. 岩石学报, 15(2): 237-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.009.htm [86] 邱检生, 肖娥, 胡建, 等, 2008. 福建北东沿海高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约. 岩石学报, 24 (11): 2468-2484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm [87] 邱骏挺, 余心起, 张德会, 等, 2011. 浙西开化地区桐村花岗斑岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 30(9): 1360-1368. doi: 10.3969/j.issn.1671-2552.2011.09.004 [88] 瞿泓滢, 裴荣富, 李进文, 等, 2010. 安徽铜陵凤凰山石英二长闪长岩和花岗闪长岩锆石SHRIMP U-Pb年龄及其地质意义. 吉林大学学报(地球科学版), 40(3): 581-590. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201003016.htm [89] 唐燕文, 谢玉玲, 李应栩, 等, 2013. 浙江安吉多金属矿区坞山关杂岩体锆石LA-ICP-MS U-Pb年龄、地球化学特征及地质意义. 地质论评, 59(4): 702-715. doi: 10.3969/j.issn.0371-5736.2013.04.010 [90] 王剑, 包超民, 高永华, 等, 2003. 浙北富阳神功村二长花岗斑岩脉SHRIMP锆石U-Pb年龄及其地质意义. 地质通报, 22(9): 729-732. doi: 10.3969/j.issn.1671-2552.2003.09.018 [91] 汪建国, 汪隆武, 陈小友, 等, 2010. 浙西开岭脚和里陈家花岗闪长岩锆石SHRIMP U-Pb年龄及其地质意义. 中国地质, 37(6): 1559-1565. doi: 10.3969/j.issn.1000-3657.2010.06.002 [92] 王强, 赵振华, 简平, 等, 2004. 德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学. 岩石学报, 20(2): 315-324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402011.htm [93] 谢建成, 陈思, 荣伟, 等, 2012a. 安徽牯牛降A型花岗岩的年代学、地球化学和构造意义. 岩石学报, 28(12): 4007-4020. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212017.htm [94] 谢建成, 陈思, 孙卫东, 等, 2012b. 安徽铜陵早白垩世埃达克质岩地球化学: 成岩成矿制约. 岩石学报, 28(10): 3181-3196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201210012.htm [95] 谢玉玲, 唐燕文, 李应栩, 等, 2012. 浙江安吉铅锌多金属矿区细粒花岗岩的岩石化学、年代学及成矿意义探讨. 矿床地质, 31(4): 891-902. doi: 10.3969/j.issn.0258-7106.2012.04.017 [96] 邢光福, 卢清地, 陈荣, 等, 2008. 华南晚中生代构造体制转折结束时限研究——兼与华北燕山地区对比. 地质学报, 82(4): 451-463. doi: 10.3321/j.issn:0001-5717.2008.04.003 [97] 许逢明, 杜杨松, 王功文, 等., 2012. 安徽月山复式岩体锆石SHRIMP U-Pb年龄和地球化学特征及其地质意义. 矿物岩石, 32(1): 61-66. doi: 10.3969/j.issn.1001-6872.2012.01.009 [98] 章邦桐, 王凱兴, 凌洪飞, 等, 2012. 浙江莫干山花岗岩体锆石U-Pb、全岩Rb-Sr年代学、Sr-Nd-O同位素地球化学及成因研究. 矿物岩石地球化学通报, 31(4): 347-353. doi: 10.3969/j.issn.1007-2802.2012.04.005 [99] 张建芳, 解怀生, 许兴苗, 等, 2013. 浙江漓渚地区栅溪-广山岩体地质地球化学特征、构造及找矿意义. 中国地质, 40(2): 403-413. doi: 10.3969/j.issn.1000-3657.2013.02.004 [100] 张俊杰, 王光杰, 杨晓勇, 等, 2012. 皖南族德花岗闪长岩与暗色包体的成因: 地球化学、锆石U-Pb年代学与Hf同位素制约. 岩石学报, 28(12): 4047-4063. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212020.htm [101] 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026 [102] 张招崇, 简平, 魏罕蓉, 2007. 江西三清山国家地质公园花岗岩SHRIMP年龄、地质地球化学特征和岩石成因类型. 地质论评, 53(增刊): 28-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2007S1006.htm [103] 赵鹏, 姜耀辉, 廖世勇, 等, 2010. 赣东北鹅湖岩体SHRIMP锆石U-Pb年龄、Sr-Nd-Hf同位素地球化学与岩石成因. 高校地质学报, 16(2): 218-225. doi: 10.3969/j.issn.1006-7493.2010.02.009 [104] 周洁, 姜耀辉, 葛伟亚, 2014. 江南造山带东部族德高Sr/Y花岗闪长岩的形成机制及其构造意义. 地质学报, 88(1): 53-62. doi: 10.3969/j.issn.1006-0995.2014.01.013 [105] 周洁, 姜耀辉, 曾勇, 等, 2013. 江南造山带东段旌德岩体锆石LA-ICP-MS年龄和Nd-Sr-Hf同位素地球化学. 中国地质, 40(5): 1379-1391. doi: 10.3969/j.issn.1000-3657.2013.05.004