Zircon U-Pb Age and Geochemical Characteristics of Volcanic Rocks in Gaerqiong-Galale Cu-Au Ore District, Tibet
-
摘要: 尕尔穷-嘎拉勒铜金矿集区是班-怒结合带南部的重要矿集区.矿集区内发育大面积火山岩, 利用锆石U-Pb年代学方法, 首次精确测定了研究区内不同地层中火山岩年龄, 并结合其岩石地球化学特征探讨了其形成构造背景.研究表明, 区内朗久组火山角砾岩成岩年龄为141.7.0±0.47 Ma(MSWD=0.43), 多爱组流纹岩年龄为136.80±0.48 Ma(MSWD=0.79), 形成时代为早白垩世初期, 属于班公湖-怒江洋南向俯冲的岩浆作用响应; 原定多爱组火山角砾岩(GE火山角砾岩)年龄为85.20±0.53 Ma(MSWD=3.40), 形成时代为晚白垩世, 不属于早白垩世多爱组产物, 属于洋盆消亡后羌塘陆块与冈底斯陆块汇聚阶段的火山作用产物, 晚于尕尔穷铜金矿的成矿年龄(86.87±0.50 Ma).岩石地球化学特征表明, 区内火山岩均具有相对富集Rb、Th、U等大离子亲石元素(LILE), 而亏损Ta、Nb、Yb、Ti等高场强元素(HFSE)的特征, 显示出弧火山岩特性.结合区域已有火山岩研究资料表明, 在班公湖-怒江洋南向俯冲过程中, 从早白垩世初至中晚期均有比较连续的火山作用, 持续时间约为30 Ma(140~110 Ma); 在班公湖-怒江洋盆消亡后的羌塘陆块与冈底斯陆块汇聚晚阶段, 又伴随有晚白垩世火山作用的发生, 该期火山作用与区内成矿岩体年龄相当, 可能为同一岩浆系统的产物. 关键字: 火山岩; 班公湖-怒江特提斯洋; 俯冲; 碰撞; 尕尔穷-嘎拉勒矿集区; 地球化学.
-
关键词:
- 火山岩 /
- 班公湖-怒江特提斯洋 /
- 俯冲 /
- 碰撞 /
- 尕尔穷-嘎拉勒矿集区 /
- 地球化学
Abstract: Located in the southern Bangong Co-Nujiang River suture zone, the Gaerqiong-Galale ore district is an important Cu-Au ore dense district with a large area of volcanics. This study firstly accurately determinates the ages of volcanics in different strata using U-Pb zircon geochronology method, then discusses the structural setting during formation combining the geochemistry characteristics. The results show that volcanic breccia age of Langjiu Group is 141.70±0.47 Ma (MSWD=0.43), rhyolite age of Duoai Group is 136.80±0.48 Ma (MSWD=0.79), formation age is early Early Cretaceous, being attributed to volcanism of Bangong-Nujiang southward subduction; volcanic breccias age of Duoai Group (GE volcanic breccias) is 85.20±0.53 Ma (MSWD=3.40), formation age is Late Cretaceous and does not belong to the Early Cretaceous Duoai Group, which was the volcanism product of Qiangtang landmass and Gangdese landmass converging after ocean basin demise and was later than the mineralization age (86.87±0.50 Ma) of the Gaerqiong Cu-Au deposit. Geochemical characteristics indicate that volcanics are enriched in LILE, e.g. Rb, Th, U and others, but depleted in Ta, Nb, Yb, Ti and other HFSE, and it exhibits arc volcanic rock characteristics. It is found that there was continuous volcanism from early to middle Early Cretaceous during Bangong-Nujiang southward subduction about 30 Ma (140-110 Ma); it was also accompanied by volcanism of Late Cretaceous during Qiangtang landmass and Gangdese landmass converging after ocean basin demise; the age of this volcanism is similar to that of rock mineralization in district, and they may belong to the same magma system.-
Key words:
- volcanic rock /
- Bangong Co-Nujiang Tethys ocean /
- subduction /
- collision /
- Gaerqiong-Galale ore district /
- geochemisty
-
图 1 尕尔穷-嘎拉勒矿集区地质简图
据唐菊兴等,2013修改
Fig. 1. Generalized geological map of the Gerqiong-Glale Cu-Au ore field
图 4 尕尔穷-嘎拉勒矿集区火山岩TAS(a)、SiO2-K2O(b)、Yb+Ta-Rb(c)和La/Yb-Ba/La(d)图解
图d底图据朱弟成等(2006)
Fig. 4. TAS (a)、SiO2 vs. K2O (b)、Yb+Ta vs. Rb (c)、La/Yb vs. Ba/La (d) diagrams of volcanic rocks in Gaerqiong-Galale ore district
表 1 尕尔穷-嘎拉勒矿集区朗久组火山角砾岩LA-ICP-MS锆石U-Pb同位素测年结果
Table 1. Zircons U-Pb data of the Langjiu group volcanic breccias in Gaerqiong-Galale ore district
测点号 元素含量(10-6) Th/U 同位素比值 表面年龄(Ma) Pb U Tu 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 4.34 188.55 125.90 0.67 0.049 9 0.002 2 0.152 7 0.006 9 0.022 2 0.000 1 191.84 101.50 144.27 6.54 141.39 0.87 2 1.61 66.81 59.29 0.89 0.048 5 0.004 2 0.149 5 0.012 8 0.022 3 0.000 2 125.17 202.68 141.47 12.15 142.44 1.31 3 9.29 360.88 344.95 0.96 0.049 1 0.001 3 0.150 9 0.003 9 0.022 3 0.000 1 151.72 61.20 142.69 3.69 142.14 0.94 4 6.64 261.36 295.70 1.13 0.048 9 0.002 2 0.148 9 0.006 8 0.022 1 0.000 1 143.59 104.70 140.94 6.40 140.78 0.85 5 28.96 965.95 1 817.90 1.88 0.048 7 0.000 4 0.149 8 0.001 4 0.022 3 0.000 1 133.99 18.38 141.77 1.33 142.23 0.92 6 8.96 370.09 289.90 0.78 0.049 1 0.001 2 0.150 2 0.003 7 0.022 2 0.000 1 150.74 57.92 142.12 3.52 141.60 0.86 7 4.67 190.09 156.45 0.82 0.049 5 0.002 0 0.151 4 0.006 2 0.022 2 0.000 1 169.78 95.71 143.18 5.88 141.58 0.90 8 5.57 234.62 166.34 0.71 0.048 9 0.001 6 0.149 3 0.004 9 0.022 1 0.000 1 144.27 77.47 141.27 4.68 141.09 0.84 9 8.34 331.49 299.56 0.90 0.049 2 0.001 6 0.151 0 0.004 9 0.022 2 0.000 1 159.41 74.68 142.79 4.63 141.79 0.81 10 3.70 146.37 136.50 0.93 0.048 7 0.002 6 0.149 8 0.009 0 0.022 3 0.000 1 131.74 127.31 141.74 8.54 142.34 0.95 11 6.41 251.87 279.12 1.11 0.049 2 0.002 0 0.149 9 0.006 2 0.022 1 0.000 1 157.12 96.51 141.82 5.85 140.90 0.86 12 3.88 158.51 120.75 0.76 0.048 7 0.001 8 0.150 3 0.005 5 0.022 4 0.000 1 133.77 86.41 142.19 5.22 142.69 0.84 13 10.58 385.37 542.74 1.41 0.048 9 0.001 9 0.149 6 0.008 3 0.022 2 0.000 1 143.33 93.29 141.60 7.86 141.49 0.95 14 5.03 171.36 304.90 1.78 0.049 2 0.002 8 0.150 5 0.008 6 0.022 2 0.000 1 157.42 130.87 142.34 8.17 141.44 0.91 表 2 尕尔穷-嘎拉勒矿集区GE火山角砾岩LA-ICP-MS锆石U-Pb测年结果
Table 2. Zircons U-Pb data of the Duoai group volcanic breccias in Gaerqiong-Galale ore district
测点号 元素含量(10-6) Th/U 同位素比值 表面年龄(Ma) Pb U Tu 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 10.84 720.49 702.24 0.97 0.048 3 0.001 6 0.088 8 0.002 8 0.013 3 0.000 1 114.09 77.34 86.35 2.72 85.35 0.52 2 7.43 463.57 635.91 1.37 0.047 8 0.001 5 0.088 2 0.002 8 0.013 4 0.000 1 90.66 74.74 85.84 2.69 85.67 0.52 3 8.50 507.48 802.55 1.58 0.048 9 0.001 8 0.089 9 0.003 8 0.013 3 0.000 1 143.46 86.47 87.45 3.73 85.41 0.53 4 9.25 534.29 987.51 1.85 0.047 9 0.001 2 0.087 6 0.002 2 0.013 3 0.000 1 95.08 59.49 85.23 2.19 84.88 0.50 5 4.64 270.93 503.85 1.86 0.047 5 0.002 1 0.086 2 0.003 9 0.013 1 0.000 1 76.70 105.38 83.92 3.79 84.18 0.54 6 6.79 383.34 769.37 2.01 0.047 7 0.001 8 0.086 9 0.003 3 0.013 2 0.000 1 82.33 88.27 84.63 3.19 84.71 0.53 7 8.49 496.48 822.28 1.66 0.048 1 0.001 3 0.088 6 0.002 4 0.013 4 0.000 1 102.66 63.81 86.20 2.37 85.61 0.50 8 12.78 788.11 1 125.61 1.43 0.048 5 0.001 0 0.088 1 0.001 8 0.013 2 0.000 1 122.66 46.28 85.71 1.71 84.39 0.49 9 6.18 399.04 440.00 1.10 0.048 8 0.001 5 0.089 7 0.002 8 0.013 3 0.000 1 138.38 70.48 87.19 2.70 85.34 0.53 10 7.42 452.13 672.36 1.49 0.048 6 0.001 3 0.088 0 0.002 4 0.013 1 0.000 1 129.40 62.49 85.64 2.32 84.08 0.50 11 6.08 368.33 487.05 1.32 0.046 8 0.001 8 0.086 8 0.003 3 0.013 5 0.000 1 37.04 91.90 84.49 3.26 86.18 0.58 12 12.33 739.63 1 120.10 1.51 0.049 5 0.001 0 0.090 8 0.001 9 0.013 3 0.000 1 170.17 44.92 88.21 1.82 85.21 0.52 13 7.39 462.43 639.68 1.38 0.049 0 0.001 7 0.088 7 0.003 1 0.013 1 0.000 1 149.29 80.73 86.28 2.97 84.02 0.52 14 7.27 430.22 618.90 1.44 0.048 5 0.001 5 0.091 6 0.002 8 0.013 7 0.000 1 122.51 71.75 88.98 2.76 87.74 0.53 15 13.64 857.56 1 059.60 1.24 0.048 1 0.000 7 0.089 0 0.001 4 0.013 4 0.000 1 103.57 35.90 86.57 1.36 85.96 0.51 表 3 尕尔穷-嘎拉勒矿集区多爱组流纹岩LA-ICP-MS锆石U-Pb同位素测年
Table 3. Zircons U-Pb data of the Duoai group rhyolite in Gaerqiong-Galale ore district
测点号 元素含量(10-6) Th/U 同位素比值 表面年龄(Ma) Pb U Tu 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 2.00 82.99 60.18 0.73 0.048 9 0.003 6 0.146 0 0.010 7 0.021 7 0.000 2 140.98 171.14 138.39 10.15 138.24 1.11 2 2.64 112.21 70.50 0.63 0.048 5 0.003 9 0.144 2 0.011 7 0.021 6 0.000 2 121.32 188.99 136.76 11.06 137.65 1.06 3 10.51 461.55 293.82 0.64 0.049 0 0.002 1 0.143 7 0.006 2 0.021 3 0.000 1 146.80 102.77 136.36 5.90 135.76 0.81 4 2.80 110.62 114.95 1.04 0.049 2 0.004 1 0.144 7 0.012 0 0.021 3 0.000 2 156.91 194.36 137.21 11.40 136.07 1.07 5 8.10 354.85 190.97 0.54 0.048 6 0.001 0 0.143 8 0.003 1 0.021 5 0.000 1 128.02 49.54 136.42 2.90 136.90 0.89 6 2.36 103.22 55.87 0.54 0.049 3 0.003 6 0.145 7 0.010 9 0.021 5 0.000 1 159.99 173.02 138.09 10.29 136.82 0.94 7 9.18 400.03 212.78 0.53 0.048 9 0.000 9 0.145 0 0.002 7 0.021 5 0.000 1 141.79 41.58 137.48 2.54 137.24 0.79 8 6.39 260.55 221.41 0.85 0.048 6 0.001 9 0.143 7 0.005 6 0.021 4 0.000 1 129.61 90.72 136.36 5.31 136.8 0.85 9 2.53 95.59 99.99 1.05 0.049 1 0.003 8 0.144 0 0.011 4 0.021 3 0.000 2 152.05 182.86 136.62 10.81 135.73 1.14 10 3.50 151.53 79.57 0.53 0.049 1 0.003 6 0.143 8 0.010 6 0.021 2 0.000 2 151.86 171.09 136.42 10.05 135.53 0.97 11 8.90 378.02 227.20 0.60 0.048 3 0.001 4 0.142 9 0.004 0 0.021 4 0.000 1 115.20 66.43 135.63 3.76 136.80 0.83 12 6.83 300.99 131.64 0.44 0.048 8 0.001 9 0.145 5 0.005 7 0.021 6 0.000 1 137.55 89.50 137.94 5.38 137.96 0.85 13 5.97 248.47 204.18 0.82 0.049 1 0.002 1 0.145 1 0.006 2 0.021 4 0.000 1 153.05 101.56 137.57 5.92 136.67 0.91 14 3.59 148.34 126.59 0.85 0.048 7 0.004 8 0.142 5 0.013 8 0.021 2 0.000 2 134.69 229.12 135.28 13.09 135.31 1.17 15 3.43 144.59 125.98 0.87 0.049 4 0.004 4 0.146 7 0.013 2 0.021 5 0.000 2 168.72 210.07 139.03 12.50 137.30 1.04 表 4 尕尔穷-嘎拉勒矿集区火山岩主量元素(10-2)分析结果
Table 4. Major element (10-2) composition of volcanic rocks in Gaerqiong-Galale ore district
原样编号 多爱组凝灰岩 朗久组凝灰岩 多爱组流纹岩 朗久组火山角砾岩 GE火山角砾岩 NGB01 NGB02 XGB01 XGB02 HGB01 HGB02 HGB03 EGB01 EGB02 JGB01 JGB02 JGB03 SiO2 58.71 58.71 54.03 57.64 81.78 81.61 78.98 66.21 66.15 68.48 71.58 70.36 Al2O3 19.24 19.09 17.83 16.08 6.39 6.78 6.28 15.23 14.74 12.92 10.78 11.47 Fe2O3 0.092 0.049 2.00 3.25 0.26 0.052 0.16 0.73 0.84 2.24 1.65 1.85 FeO 3.76 3.71 4.60 3.68 0.61 0.51 0.61 2.30 1.89 1.94 2.66 2.07 MgO 2.24 2.24 4.18 3.39 0.32 0.50 0.44 1.74 1.38 0.91 0.52 0.49 CaO 5.85 5.82 5.89 5.73 3.74 4.04 5.75 3.06 3.89 3.35 4.63 4.69 Na2O 1.08 1.09 4.61 3.31 1.09 1.12 0.97 3.41 3.45 2.34 2.31 1.99 K2O 6.07 5.97 3.36 2.95 3.29 3.01 2.98 1.81 1.72 4.77 3.73 4.79 TiO2 0.62 0.61 0.87 0.76 0.10 0.11 0.10 0.49 0.40 0.41 0.22 0.25 MnO 0.027 0.022 0.14 0.092 0.033 0.029 0.045 0.057 0.066 0.073 0.15 0.12 P2O5 0.045 0.045 0.34 0.28 0.018 0.020 0.017 0.17 0.14 0.091 0.066 0.069 LOSS 1.72 1.97 1.49 2.21 2.24 2.03 3.03 4.63 5.21 2.06 1.31 1.25 Mg# 51.70 52.10 62.00 62.40 48.40 63.80 56.30 57.60 56.80 45.70 26.00 29.90 总计 99.50 99.30 99.30 99.40 99.90 99.80 99.40 99.80 99.90 99.60 99.60 99.40 石英(Q) 10.90 11.50 0.00 10.60 58.80 58.50 55.90 30.90 30.00 29.50 35.50 32.60 钙长石(An) 29.50 29.50 18.40 20.90 2.88 4.71 4.14 14.90 19.60 10.90 8.18 8.39 钠长石(Ab) 9.37 9.43 37.90 28.80 9.48 9.66 8.48 30.30 30.90 20.30 19.90 17.10 正长石(Or) 36.70 36.20 20.30 17.90 19.90 18.20 18.30 11.20 10.80 28.90 22.40 28.80 霞石(Ne) 0.00 0.00 1.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 刚玉(C) 0.32 0.34 0.00 0.00 0.00 0.00 0.00 2.58 0.43 0.00 0.00 0.00 透辉石(Di) 0.00 0.00 7.72 5.45 3.32 4.23 4.24 0.00 0.00 4.69 9.41 6.68 紫苏辉石(Hy) 11.70 11.70 0.00 9.50 0.00 0.00 0.00 7.61 6.00 1.49 0.00 0.00 硅灰石(Wo) 0.00 0.00 0.00 0.00 5.05 4.41 8.48 0.00 0.00 0.00 1.63 2.99 橄榄石(Ol) 0.00 0.00 9.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 钛铁矿(Il) 1.21 1.19 1.68 1.48 0.19 0.21 0.20 0.99 0.81 0.79 0.42 0.48 磁铁矿(Mt) 0.14 0.07 2.97 4.64 0.38 0.08 0.24 1.11 1.28 3.19 2.44 2.73 磷灰石(Ap) 0.11 0.11 0.80 0.68 0.04 0.05 0.04 0.41 0.35 0.22 0.15 0.16 锆石(Zr) 0.05 0.05 0.04 0.03 0.01 0.01 0.01 0.03 0.02 0.03 0.02 0.02 铬铁矿(Cm) 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 合计 100.04 100.03 99.99 100.02 100.00 100.01 100.02 100.03 100.02 100.03 100.02 100.03 分异指数(DI) 57.00 57.10 59.20 57.40 88.10 86.30 82.70 72.40 71.60 78.70 77.80 78.60 A/CNK 1.01 1.01 0.81 0.84 0.53 0.55 0.41 1.16 1.01 0.86 0.66 0.68 固结指数(SI) 16.90 17.20 22.30 20.50 5.74 9.64 8.52 17.40 14.90 7.47 4.78 4.38 注:Mg#=100×Mg(Mg+Fe2+). 表 5 尕尔穷-嘎拉勒矿集区火山岩微量元素(10-6)分析结果
Table 5. Trace element (10-6) composition of volcanic rocks in Gaerqiong-Galale ore district
编号 多爱组凝灰岩 朗久组凝灰岩 多爱组流纹岩 朗久组火山角砾岩 GE火山角砾岩 NGB01 NGB02 XGB01 XGB02 HGB01 HGB02 HGB03 EGB01 EGB02 JGB01 JGB02 JGB03 As 2.44 2.10 4.24 13.90 67.60 34.90 69.50 5.11 8.18 7.02 9.90 5.53 Ba 357.00 329.00 471.00 578.00 267.00 227.00 258.00 337.00 245.00 774.00 475.00 653.00 Co 9.34 8.86 22.40 13.30 1.37 1.87 1.69 8.89 7.94 6.01 3.06 4.02 Cr 33.50 34.40 15.80 26.70 6.18 5.94 5.97 34.60 31.50 6.57 9.41 6.65 Cs 34.00 36.40 6.52 5.26 3.34 4.76 4.02 5.33 15.10 18.60 19.3 6.26 Cu 26.20 14.50 25.80 9.26 12.60 4.78 4.36 5.06 21.80 51.20 23.10 34.50 Ga 22.50 25.60 19.10 20.00 5.40 5.61 5.47 16.50 17.00 13.60 11.40 11.10 Hf 8.22 8.21 4.95 4.13 1.46 1.81 1.56 3.90 3.23 4.60 3.53 3.44 Nb 15.20 16.90 15.20 12.60 3.81 3.12 3.58 14.30 6.49 10.30 10.40 10.10 Ni 18.70 17.40 13.90 9.03 4.26 5.11 3.97 24.70 22.10 3.32 3.71 2.15 Pb 78.30 94.40 7.23 11.10 19.30 29.30 28.90 14.30 6.58 24.30 17.80 18.50 Rb 382.00 369.00 175.00 134.00 182.00 171.00 158.00 95.00 101.00 189.00 168.00 201.00 Sb 1.06 1.04 0.80 0.66 0.88 1.58 1.47 0.66 0.50 1.39 0.91 0.70 Sc 16.50 15.60 13.70 16.60 1.91 1.99 1.89 6.22 5.67 7.32 5.78 5.58 Sr 174.00 172.00 727.00 561.00 158.00 162.00 131.00 275.00 333.00 327.00 229.00 283.00 Ta 1.40 1.48 0.96 0.86 0.39 0.17 0.27 1.09 0.62 0.86 0.99 0.95 Th 21.50 24.10 7.87 9.21 5.36 5.93 5.10 8.32 6.54 14.40 17.70 17.60 U 2.06 2.32 1.70 1.80 1.19 1.14 1.16 2.05 1.48 2.55 2.31 2.35 V 61.40 58.80 145.00 133.00 10.10 9.29 9.80 55.20 47.00 44.30 21.40 25.30 Zn 51.80 44.10 115.00 65.60 19.60 20.30 23.00 45.00 70.20 47.60 34.60 55.90 Zr 272.00 271.00 185.00 153.00 47.60 59.20 49.50 139.00 117.00 156.00 113.00 109.00 Ce 115.00 111.00 58.70 68.60 25.00 21.80 35.70 48.50 47.60 85.60 67.30 81.10 Dy 7.70 7.21 4.20 4.81 1.44 1.36 2.23 1.83 1.70 3.78 4.00 3.62 Er 4.72 4.37 2.43 2.74 0.95 0.92 1.35 1.05 0.96 2.29 2.47 2.23 Eu 1.91 1.71 1.68 1.89 0.40 0.37 0.58 0.90 0.86 1.23 0.93 0.95 Gd 8.79 7.99 5.25 6.00 1.61 1.44 2.32 2.70 2.70 5.43 4.83 4.85 Ho 1.59 1.48 0.85 0.98 0.31 0.30 0.48 0.36 0.35 0.77 0.83 0.76 La 52.60 50.00 30.50 33.00 12.30 10.60 13.30 28.50 24.30 50.90 39.70 45.00 Lu 0.70 0.68 0.34 0.36 0.16 0.17 0.19 0.15 0.13 0.35 0.37 0.33 Nd 48.80 44.50 28.00 33.00 8.95 7.71 12.10 18.00 18.30 37.00 30.60 32.10 Pr 11.90 10.90 6.69 7.71 2.34 1.93 3.00 4.76 4.68 9.69 7.92 8.57 Sm 9.53 8.52 5.35 6.54 1.66 1.38 2.48 2.82 3.04 6.05 5.26 5.21 Tb 1.33 1.23 0.76 0.88 0.25 0.23 0.38 0.35 0.35 0.72 0.72 0.65 Tm 0.68 0.65 0.34 0.37 0.15 0.15 0.19 0.15 0.13 0.33 0.37 0.32 Y 36.20 35.50 23.90 22.90 9.73 9.30 11.20 10.90 9.58 19.40 21.60 18.70 Yb 4.65 4.42 2.20 2.43 1.04 1.04 1.25 0.98 0.85 2.20 2.51 2.13 ΣREE 270.00 254.00 147.00 169.00 56.60 49.30 75.50 111.00 106.00 206.00 168.00 188.00 LREE 240.00 226.00 131.00 151.00 50.70 43.70 67.10 104.00 98.70 190.00 152.00 173.00 HREE 30.20 28.00 16.30 18.60 5.92 5.59 8.39 7.58 7.15 15.90 16.10 14.90 LREE/HREE 7.94 8.08 8.01 8.11 8.56 7.82 8.00 13.70 13.80 12.00 9.41 11.60 LaN/YbN 8.12 8.11 9.95 9.72 8.51 7.29 7.59 20.90 20.60 16.60 11.40 15.20 δEu 0.64 0.63 0.97 0.92 0.75 0.81 0.73 1.00 0.92 0.66 0.56 0.58 δCe 1.12 1.17 1.01 1.06 1.14 1.18 1.39 1.02 1.09 0.95 0.93 1.01 -
[1] Altherton, M.P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362: 144-146. doi: 10.1038/362144a0 [2] Bacon, C.R., Druitt, T.H., 1988. Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazarna, Crater Lake, Oregon. Contribution to Mineralogy and Petrology, 98(2): 224-256. doi: 10.1007/BF00402114 [3] Condie, K.C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, London. [4] Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic Vocanic Rocks from Central and Southern Tibet: 39Ar/40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth and Planetary Science Letters, (79): 281-302. doi: 10.1016/0012-821X(86)90186-X [5] Crofu, F., Hanchar, J.M., Hoskin, P.W., et al., 2003. Atlas of Zircon Textures. Reviews Mineral Geochemistry, 53(1): 469-495. doi: 10.2113/0530469 [6] Deng, J.F., Zhao, H.L., Mo, X.X., et al., 1996. Continental Roots-Plume Tectonics of China: Key to the Continental Dynamics. Geological Publishing House, Beijing (in Chinese). [7] Deng, S.L., Tang, J.X., Li, Z.J., et al., 2011. Geochemical Characteristics of Rock Mass in the Gaerqiong Cu-Au Deposit, Tibet. Journal of Chendu University of Technology(Science & Technology Edition), 38(1): 85-91(in Chinese with English abstract). http://www.researchgate.net/publication/291105246_Geochemical_characteristics_of_rock_mass_in_the_Gaerqiong_Cu-Au_deposit_Tibet [8] Du, D.D., Qu, X.M., Wang, G.H., et al., 2011. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet: Evidence from Zircon U-Pb LAICPMS Dating and Petrogeochemistry of Arc Granites. Acta Petrologica Sinica, 27(7): 1993-2002(in Chinese with English abstract). http://www.oalib.com/paper/1475000 [9] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002. Determination of Forty-Two Major and Trace Elements of USGS and NIST SRM Glasses by Laster Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostand. Newsl. , 26(2): 181-196, doi: 10.1111/j.1751-908X.2002.tb00886.x [10] Gao, S.B., Zheng, Y.Y., Wang, J.S., et al., 2011. The Geochronology and Geochemistry of Instrusive Rocks in Bange Area: Constraints on the Evolution Time of the Bangong Lake-Nujiang Ocean Basin. Acta Petrologica Sinica, 27(7): 1973-1982(in Chinese with English abstract). http://www.oalib.com/paper/1474244 [11] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011. Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet. Geological Bulletin of China, 30(8): 1261-1274(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgqydz201108013 [12] Guffanti, M., Clynne, M, A., Muffler, L.J.P., 1996. Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Constraint on Basalt Influx to the Lower Crust. Journal of Geophysical Research, 101(B2): 3001-3013. doi: 10.1029/95JB03463 [13] Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009GeCAS..73R.552H [14] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006a. Metallogenesis in Tibetan Collisional Orogenic Belt: Ⅰ. Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 25(4): 337-358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200606000.htm [15] Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006b. Metallogenesis in Tibetan Collisional Orogenic Belt: Ⅱ. Mineralization in Late-Collisional Transformation Setting. Mineral Deposits, 25(5): 521-543(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-kcdz200605000.htm [16] Hsü, K.J., Pan, G.T., Sengör, A.M.C., 1995. Tectonic Evolution of the Tibetan Plateau: A Working Hypothesis Based on the Archipelago Model of Orogenesis. International Geology Review, 37(6): 473-508. doi: 10.1080/00206819509465414 [17] Hu, Z.H., Ding, F., Tang, J.X., et al., 2012. Geological Characteristics and Genetic Significance of Ga'erqiong Cu-Au Deposits in Ge'gyai County, Tibet. Acta Geoscientica Sinica, 33(4): 588-600 (in Chinese with English abstract). [18] Ingle, S., Weis, D., Frey, F.A., 2002. Indian Continental Crust Recovered from Elan Bank, Kerguelen Plateau(ODP Leg 183, Site 1137). Journal of Petrology, 43: 1241-1257. doi: 10.1093/petrology/43.7.1241 [19] Jiang, J.H., Wang, R.J., Qu, X.M., et al., 2011. Crustal Extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, after the Closure of the Tethys Oceanic Basin. Earth Science—Journal of China University of Geosciences, 36(6): 1021-1032(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201106008.htm [20] Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008. Cretaceous Volcanic Rocks of Zenong Group in North-Middle Lhasa Block: Products of Southward Subducting of the Slainajap Ocean?Acta Petrologica Sinica, 24(2): 303-314(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200802012.htm [21] Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2009. Geochemistry of Cretaceous Volcanic Rocks of Duoni Formation in Northern Lhasa Block: Discussion of Tectonic Setting. Earth Science—Journal of China University of Geosciences, 34(1): 89-104(in Chinese with English abstract). doi: 10.3799/dqkx.2009.009 [22] Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block: Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10): 3106-3116(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201010022.htm [23] Kapp, P., DeCelles, P.G., Gehrels, G.E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7): 917-932. doi: 10.1130/B26033.I [24] Kapp, P., Murphy, M.A., Yin, A., et al., 2003. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics, 22(4): 1029. doi: 10.1029/2001TC001332 [25] Kapp, P., Yin, A., Harrison, T.M., et al., 2005. Cretacenus-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet. Geological Society of America Bulletin, 117(7/8): 865-878. doi: 10.1130/B25595.1 [26] Leier, A.L., Kapp, P., DeCelles, P.G., et al., 2007. Lower Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding the Early Tectonic History of the Tibetan Platean. Journal of Sedimentary Reserch, 77: 809-825. doi: 10.2110/jsr.2007.078 [27] Li, G.M., Li, J.X., Qin, K.Z., et al., 2007. High Temperature, Salinity and Strong Oxidation Ore-Forming Fluid at Duobuza Gold-Rich Porphyry Copper Deposit in the Bangonghu Tectonic Belt, Tibet: Evidence from Fluid Inclusions. Acta Petrologica Sinica, 23(5): 935-952(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030175052 [28] Li, G.M., Li, J.X., Qin, K.Z., et al., 2011. Geology and Hydrothermal Alteration of the Duobuza Gold-Rich Porphyry Copper District in the Bangongco Metallogenetic Belt, Northwestern Tibet. Resource Geology, 62(1): 99-118. doi: 10.1111/j.1751-3928.2011.00182.x [29] Li, J.X., Li, G.M., Qin, K.Z., et al., 2008. Geochemistry of Porphyries and Volcanic Rocks and Ore-Forming Geochronology of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt, Tibet: Constraints on Metallogenic Tectonic Settings. Acta Petrologica Sinica, 24(3): 531-543(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ysxb98200803013 [30] Li, J.X., Qin, K.Z., Li, G.M., et al., 2014. Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet: Petrogenetic and Tectonic Implications. Lithos, 198: 77-91. doi: 10.1016/j.lithos.2014.03.025 [31] Li, Z.J., Tang, J.X., Yao, X.F., et al., 2011a. Geological Characteristics and Prospecting Potential of Gaerqiong Copper-Gold Polymetallic Deposit in Ali District, Northern Tibet. Mineral Deposits, 30(6): 1149-1153(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201106015.htm [32] Li, Z.J., Tang, J.X., Yao, X.F., et al., 2011b. Re-Os Isotope Age and Geological Significance of Molybdenite in the Gaerqiong Cu-Au Deposit of Geji, Tibet, China. Journal of Chendu University of Technology(Science & Technology Edition), 38(6): 678-683(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG201106015.htm [33] Liu, X.M., Gao, S., Yuan, H.L., et al., 2002. Analysis of 42 Major and Trace Elements in Glass Standard Reference Materials by 193 nm LA-ICPMS. Acta Petrologica Sinica, 18(3): 408-418(in Chinese with English abstract). http://www.oalib.com/paper/1471689 [34] Lü, L.N., Cui, Y.B., Song, L., et al., 2011. Geochemical Characteristics and Zircon LA-ICP-MS U-Pb Dating of Galale Skarn Gold(Copper) Deposit, Tibet and Its Significance. Earth Science Frontiers, 18(5): 224-242(in Chinese with English abstract). http://www.researchgate.net/publication/313564767_Geochemical_characteristics_and_zircon_LA-ICP-MS_U-Pb_dating_of_Galale_skarn_goldcopper_deposit_Tibet_and_its_significance [35] Luo, L., An, X.Y., Wu, N.W., et al., 2014. Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Bangonghu-Shuanghu-Nujiang-Changning-Menglian Suture Zone. Earth Science—Journal of China University of Geosciences, 39(8): 1169-1184(in Chinese with English abstract). doi: 10.3799/dqkx.2014.102 [36] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3): 281-290(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026542272 [37] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Reserch of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148(in Chinese with English abstract). [38] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract). http://www.oalib.com/paper/1472080 [39] Pan, G.T., Wang, L.Q., Zhu, D.C., 2004. Thoughts on Some Important Scientific Problems in Regional Geological Survey of the Qinghai-Tibet Plateau. Geological Bulletin of China, 23(1): 12-19(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD200401003.htm [40] Pearce, J.A., Deng, W.M., 1988. The Ophiolites of the Tibet Geotraverses, Lhasa to Golmud(1985) and Lhasa to Kathmandu(1986). Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci. , 327(1594): 215-238. doi: 10.1098/rsta.1988.0127 [41] Qin, K.Z., Li, G.M., Zhang, Q., et al., 2006. Metallogenic Conditions and Possible Occurrences for Epithermal Gold Mineralizations in Gangdese and Bangonghu Belts, Tibet—In View of Porphyry-Epithermal Cu-Au Metallogenetic Systematic. In: Chen, Y.C., Mao, J.W., Xue, C.J., eds., Proceedings of 8th National Conference of Mineral Deposits, China. Geological Publishing House, Beijing, 666-670 (in Chinese). [42] Qu, X.M., Xin, H.B., Du, D.D., et al., 2012. Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau. Geochimica, 41(1): 1-14(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx201201002.htm [43] Qu, X.M., Xin, H.B., Du, D.D., et al., 2013. Magma Source of the A-Type Granite and Slab Break-Off in the Middle Segment of the Bangonghu-Nujiang Suture, Tibet Plateau. Acta Geologica Sinica, 87(6): 759-772(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201306002.htm [44] Qu, X.M., Xin, H.B., Xu, W.Y., et al., 2006. Discovery and Significance of Copper-Bearing Bimodal Rock Series in Coqin Area of Tibet. Acta Petrologica Sinica, 22(3): 707-716(in Chinese with English abstract). http://www.cqvip.com/QK/94579X/20063/23324724.html [45] Ren, J.S., Xiao, L.W., 2004. Lifting the Mysterious Veil of the Tectonics of the Qinghai-Tibet Plateau by 1∶250 000 Geological Mapping. Geological Bulletin of China, 23(1): 1-11(in Chinese with English abstract). http://www.researchgate.net/publication/308353195_lifting_the_mysterious_veil_of_the_tectonics_of_the_qinghai-tibet_plateau_by_1_250000_geological_mapping [46] Richards, J.P., Villeneuve, M., 2002. Characteristics of Late Cenozoic Volcanism along the Archibarca Lineament from Cerro Lluaillaco to Corrida de Cori, Northwest Argentina. Vocanol. Geotherm. Res. , 116(3-4): 161-200. doi: 10.1016/S0377-0273(01)00329-8 [47] Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Group UK Ltd., New York. [48] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48(Suppl. ): 26-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm [49] Sun, W.D., Bennetta, V.C., Kamenetsky, V.S., et al., 2004. The Mechanism of Re Enrichment in Arc Magmas: Evidence from Lau Basin Basaltic Glasses and Prirnitive Melt Inclusions. Earth and Planetary Science Letters, 222(1): 101-114, doi: 10.1016/j.epsl.2004.02.011 [50] Tang, J.X., Sun, X.G., Ding, S., et al., 2014. Discovery of the Epithermal Deposit of Cu(Au-Ag) in the Duolong Ore Concentrating Area, Tibet. Acta Geoscientica Sinica, 35(1): 6-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201401002.htm [51] Tang, J.X., Zhang, Z., Li, Z.J., et al., 2013. The Metallogenic Regularity, Deposit Model and Prospecting Direction of the Ga'erqiong-Galale Copper-Gold Ore Field, Tibet. Acta Geoscientica Sinica, 34(4): 385-394(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201253093164.html [52] Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Petrology, 37(1): 45-71. doi: 10.1093/petrology/37.1.45 [53] Volkmer, J.E., Kapp, P., Guynn, J.H., et al., 2007. Cretaceous-Tertiary Structural Evolution of the North Central Lhasa Terrane, Tibet. Tectonics, 26: TC6007. doi: 10.1029/2005TC001832 [54] Wu, Y.B., Zheng, Y.F., 2004. Minerageny of Zircon and Its Restrict on the Explanation for U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [55] Xin, H.B., Qu, X.M., Ren, L.K., et al., 2007. The Material Source and Genesis of Copper-Bearing Bimodal Rock Series in Coqin County, Westrn Tibet. Acta Geologica Sinica, 81(7): 939-945(in Chinese with English abstract). http://www.researchgate.net/publication/288439968_The_material_source_and_genesis_of_copper-bearing_bimodal_rock_series_in_Coqin_County_western_Tibet [56] Xu, R.K., Zheng, Y.Y., Zhao, P.J., et al., 2007. Definition and Geological Significance of the Gacangjian Volcanic Arc North of Dongqiao, Tibet. Geology in China, 34(5): 768-777(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200705002.htm [57] Yao, X.F., Tang, J.X., Li, Z.J., et al., 2012. Magma Origin of Two Plutons from Gaerqiong Copper-Gold Deposit and It's Geological Significance, Western Bangonghu-Nujiang Metallogenic Belt, Tibet: Implication from Hf Isotope Characteristics. Journal of Jilin University (Earth Science Edition), 42(Suppl. 2): 188-197(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ2012S2022.htm [58] Yao, X.F., Tang, J.X., Li, Z.J., et al., 2013. The Redefinition of the Ore-Forming Porphyry's Age in Gaerqiong Skarn-Type Gold-Copper Deposit, Western Banggong Lake-Nujiang River Metallogenic Belt, Xizang(Tibet). Geological Review, 59(1): 193-200(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201301027.htm [59] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003. LA-ICP-MS Zircon U-Pb Age and REE of Cenozoic Pluton in NE China. Chinese Science Bulletin, 48(14): 1511-1520(in Chinese). doi: 10.1360/csb2003-48-14-1511 [60] Zhang, L.L., Zhu, D.C., Zhao, Z.D., et al., 2011. Early Cretaceous Granitoids in Xainza, Tibet: Evidence of Slab Break-Off. Acta Petrologica Sinica, 27(7): 1938-1948(in Chinese with English abstract). http://www.researchgate.net/publication/279566705_Early_Cretaceous_granitoids_in_Xainza_Tibet_Evidence_of_slab_break-off [61] Zhang, S., Shi, H.F., Hao, H.J., et al., 2014. Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet. Earth Science—Journal of China University of Geosciences, 39(5): 509-524(in Chinese with English abstract). [62] Zhang, Z., Chen, Y.C., Tang, J.X., et al., 2013c. Geological and Skarn Mineral Characteristics of Galale Cu-Au Deposit in Tibet. Mineral Deposits, 32(5): 915-931(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201305004.htm [63] Zhang, Z., Tang, J.X., Li, Z.J., et al., 2013a. Petrology and Geochemistry of Intrusive Rocks in the Gaerqiong-Galale Ore Concentration Area, Tibet and Their Geological Implications. Geology and Exploration, 49(4): 676-688(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201304012.htm [64] Zhang, Z., Tang, J.X., Chen, Y.C., et al., 2013b. Skarn Mineral Characteristics of the Gaerqiong Cu-Au Deposit in Bangong Co-Nujiang River Suture Zone, Tibet. Acta Petrologica et Mineralogica, 32(3): 305-317(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201303004.htm [65] Zhang, Z., Tang, J.X., Yang, Y., et al., 2012. Element Spatial Distribution of the Gaerqiong Copper-Gold Deposit in Tibet and Its Geochemical Exploration Model. Acta Geoscientica Sinica, 33(4): 663-672(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201204034.htm [66] Zhao, Y.Y., Cui, Y.B., Lü, L.N., et al., 2011. Chronology, Geochemical Characteristics and the Significance of Shesuo Copper Polymetallic Deposit, Tibet. Acta Petrologica Sinica, 27(7): 2132-2142(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201107021.htm [67] Zhou, T., Chen, C., Liang, S., et al., 2014. Zircon U-Pb Geochronology and Geochemical Characteristics of Volcanic Rocks in the Ophiolite Mélange at the Bangong Lake, Tibet. Geotectonica et Metallogenia, 38(1): 157-167(in Chinese with English abstract). http://www.researchgate.net/publication/279655405_Zircon_U-Pb_Geochronology_and_Geochemical_Characteristics_of_Volcanic_Rocks_in_the_Ophiolite_Melange_at_the_Bangong_Lake_Tibet [68] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2008. Zircon U-Pb Geochronology of Zenong Group Volcanic Rocks in Coqin Area of the Gangdese, Tibet and Tectonic Significance. Acta Petrologica Sinica, 24(3): 401-412(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200803001.htm [69] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese: New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3): 534-546(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=23324706 [70] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. doi: 10.1016/j.epsl.2010.11.005 [71] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009. Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3): 298-309, doi: 10.1016/j.jseaes.2008.05.003 [72] 邓晋福, 赵海玲, 莫宣学, 等, 1996. 中国大陆根柱构造-大陆动力学的钥匙. 北京: 地质出版社, 1-110. [73] 邓世林, 唐菊兴, 李志军, 等, 2011. 西藏尕尔穷铜金矿床岩体地球化学特征. 成都理工大学学报(自然科学版), 38(1): 85-91. doi: 10.3969/j.issn.1671-9727.2011.01.013 [74] 杜德道, 曲晓明, 王根厚, 等, 2011. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲: 来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据. 岩石学报, 27(7): 1993-2002. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107009.htm [75] 高顺宝, 郑有业, 王进寿, 等, 2011. 西藏班戈地区侵入岩年代学和地球化学对班公湖-怒江洋盆演化时限的制约. 岩石学报, 27(7): 1973-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107007.htm [76] 耿全如, 潘桂棠, 王立全, 等, 2011. 班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景. 地质通报, 30(8): 1261-1274. doi: 10.3969/j.issn.1671-2552.2011.08.013 [77] 侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 [78] 侯增谦, 杨竹森, 徐文艺, 等, 2006a. 青藏高原碰撞造山带: Ⅰ. 主碰撞造山成矿作用. 矿床地质, 25(4): 337-358. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm [79] 侯增谦, 潘桂堂, 王安建, 等, 2006b. 青藏高原碰撞造山带: Ⅱ. 晚碰撞转换成矿作用. 矿床地质, 25(5): 521-543. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200605000.htm [80] 胡正华, 丁枫, 唐菊兴, 等, 2012. 西藏革吉县尕尔穷铜金矿床地质特征及其成因意义. 地球学报, 33(4): 588-600. doi: 10.3975/cagsb.2012.04.19 [81] 江军华, 王瑞江, 曲晓明, 等, 2011. 青藏高原西部班公湖岛弧带特提斯洋盆闭合后的地壳伸展作用. 地球科学——中国地质大学学报, 36(6): 1021-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106008.htm [82] 康志强, 许继峰, 董彦辉, 等, 2008. 拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物?岩石学报, 24(2): 303-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802012.htm [83] 康志强, 许继峰, 王保弟, 等, 2009. 拉萨地块北部白垩纪多尼组火山岩的地球化学: 形成的构造环境. 地球科学——中国地质大学学报, 34(1): 89-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901010.htm [84] 康志强, 许继峰, 王保第, 等, 2010. 拉萨地块北部去申拉组火山岩: 班公湖-怒江特提斯洋南向俯冲的产物. 岩石学报, 026(10): 3106-3116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010022.htm [85] 李光明, 李金祥, 秦克章, 等, 2007. 西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体——流体包裹体证据. 岩石学报, 23(5): 935-952. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705009.htm [86] 李金祥, 李光明, 秦克章, 等, 2008. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代: 对成矿构造背景的制约. 岩石学报, 24(3): 531-543. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm [87] 李志军, 唐菊兴, 姚晓峰, 等, 2011a. 藏北阿里地区新发现的尕尔穷铜金多金属矿床地质特征及其找矿前景. 矿床地质, 30(6): 1149-1153. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201106015.htm [88] 李志军, 唐菊兴, 姚晓峰, 等, 2011b. 班公湖-怒江成矿带西段尕尔穷铜金矿床辉钼矿Re-Os年龄及其地质意义. 成都理工大学学报(自然科学版), 38(6): 678-683. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201106015.htm [89] 柳小明, 高山, 袁洪林, 等, 2002.193nm LA-ICP-MS对国际地质标准参考物质中42种主量和微量元素的分析. 岩石学报, 18(3): 408-418. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203016.htm [90] 罗亮, 安显银, 吴年文, 等, 2014. 班公湖-双湖-怒江-昌宁-孟连新元古代-中生代沉积盆地演化. 地球科学——中国地质大学学报: 39(8): 1169-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408018.htm [91] 吕立娜, 崔玉斌, 宋亮, 等, 2011. 西藏嘎拉勒夕卡岩型金(铜)矿床地球化学特征与锆石的LA-ICP-MA定年及意义. 地学前缘., 18(5). 224-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105021.htm [92] 莫宣学, 董国臣, 赵志丹, 等, 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 [93] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [94] 潘桂堂, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm [95] 潘桂堂, 王立全, 朱弟成, 2004. 青藏高原区域地质调查中几个重大科学问题的思考. 地质通报, 23(1): 12-19. doi: 10.3969/j.issn.1671-2552.2004.01.007 [96] 秦克章, 李光明, 张旗, 等, 2006. 西藏浅成低温金-银矿的成矿条件与可能产出区分析——从斑岩-浅成低温铜金成矿系统的角度. 见: 陈毓川, 毛景文, 薛春纪(主编), 第八届全国矿床会议论文集. 北京: 地质出版社, 666-670. [97] 曲晓明, 辛洪波, 杜德道, 等, 2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm [98] 曲晓明, 辛洪波, 杜德道, 等, 2013. 西藏班公湖-怒江缝合带中断A-型花岗岩的岩浆源区与板片断离. 地质学报, 87(6): 759-772. doi: 10.3969/j.issn.0001-5717.2013.06.002 [99] 曲晓明, 辛洪波, 徐文艺, 等, 2006. 藏西措勤含铜双峰岩系的发现及其意义. 岩石学报, 22(3): 707-716. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603020.htm [100] 任纪舜, 肖黎薇, 2004.1∶25万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23(1): 1-11. doi: 10.3969/j.issn.1671-2552.2004.01.006 [101] 宋彪, 张玉海, 万渝生, 等, 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm [102] 唐菊兴, 孙兴国, 丁帅, 等, 2014. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床. 地球学报, 35(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401002.htm [103] 唐菊兴, 张志, 李志军, 等, 2013. 西藏尕尔穷-嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向. 地球学报, 34(4): 385-394. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201304002.htm [104] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [105] 辛洪波, 曲晓明, 任立奎等, 2007. 藏西措勤含铜岩系的物质来源与成因. 地质学报, 81(7): 939-945. doi: 10.3321/j.issn:0001-5717.2007.07.009 [106] 许荣科, 郑有业, 赵平甲, 等, 2007. 西藏东巧北尕苍见岛弧的厘定及地质意义. 中国地质, 34(5), 768-777. doi: 10.3969/j.issn.1000-3657.2007.05.003 [107] 姚晓峰, 唐菊兴, 李志军, 等, 2012. 班怒带西段尕尔穷铜金矿两套侵入岩源区研究及其地质意义——来自Hf同位素特征的指示. 吉林大学学报(地球科学版), 42(增刊2): 188-197. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2022.htm [108] 姚晓峰, 唐菊兴, 李志军, 等, 2013. 班怒带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义. 地质论评. 59(1): 193-200. doi: 10.3969/j.issn.0371-5736.2013.01.021 [109] 袁洪林, 吴福元, 高山, 等, 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 [110] 张亮亮, 朱弟成, 赵志丹, 等, 2011. 西藏申扎县早白垩世花岗岩类: 板片断离的证据. 岩石学报, 27(7): 1938-1948. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107004.htm [111] 张硕, 史洪峰, 郝海健, 等, 2014. 青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义. 地球科学——中国地质大学学报, 39(5): 509-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201405002.htm [112] 张志, 唐菊兴, 李志军, 等, 2013a. 西藏尕尔穷-嘎拉勒铜金矿集区侵入岩岩石地球化学特征及其地质意义. 地质与勘探, 49(4): 676-688. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201304012.htm [113] 张志, 唐菊兴, 陈毓川, 等, 2013b. 西藏班-怒结合带尕尔穷铜金矿床矽卡岩矿物学特征及其地质意义. 岩石矿物学杂志, 32(3): 305-317. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201303004.htm [114] 张志, 陈毓川, 唐菊兴, 等, 2013c. 西藏嘎拉勒铜金矿床地质特征及矽卡岩矿物学特征研究. 矿床地质, 32(5): 915-931. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201305004.htm [115] 张志, 唐菊兴, 杨毅, 等, 2012. 西藏尕尔穷铜金矿元素空间分布规律及地球化学勘查模型. 地球学报, 33(4): 663-672. doi: 10.3975/cagsb.2012.04.26 [116] 赵元艺, 崔玉斌, 吕立娜, 等, 2011. 西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义. 岩石学报, 27(7): 2132-2142. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107021.htm [117] 周涛, 陈超, 梁桑, 等, 2014. 西藏班公湖蛇绿混杂岩中火山岩锆石U-Pb年代学及地球化学特征. 大地构造与成矿学, 38(1): 157-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201401014.htm [118] 朱弟成, 莫宣学, 赵志丹, 等, 2008. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义. 岩石学报, 24(3): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803001.htm [119] 朱弟成, 潘桂堂, 莫宣学, 等, 2006. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境: 火山岩约束. 岩石学报, 22(3): 534-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm