Geochronology, Geochemistry and Zircon Hf Isotope of Miantian Granodiorite Intrusion in Yanbian Region, Southern Jinlin Province and Its Geological Significance
-
摘要: 对延边地区棉田花岗闪长岩岩体进行了锆石U-Pb年代学、岩石地球化学以及Hf同位素的研究, 以便对其岩石成因和古太平洋板块俯冲作用的开始时间给予制约.棉田岩体主要由花岗闪长岩和次要的花岗岩组成, 花岗闪长岩中锆石LA-ICP-MS U-Pb定年结果表明, 该岩体形成于早侏罗世(177±2 Ma, MSWD=1.13).在地球化学研究方面, 它们属于高钾钙碱性-钙碱性系列, A/CNK值介于0.88~1.12之间, 属准铝质, 为I型花岗岩, 并且明显富集大离子亲石元素(如K、Ba、Rb)、轻稀土元素(LREE)以及Th、U, 相对亏损高场强元素(如Ta、Nb、Ti、P).岩石的εHf(t)值和二阶段模式年龄(TDM2)分别介于±8.72~±12.28和437~663 Ma之间.结果表明, 岩体的原始岩浆源于新增生陆壳的部分熔融.综合区域同时代火成岩的研究成果, 认为棉田花岗闪长岩岩体形成于古太平洋板块向欧亚大陆俯冲下的火山弧环境.Abstract: This paper presents LA-ICP-MS zircon U-Pb dating, geochemical and Hf isotopic data of the granodiorite from Miantian intrusion in Yanbian region, with the aim of constraining its petrogenesis and beginning time of subduction of the Paleo-Pacific plate beneath the Eurasian continent. The Miantian intrusion consists mainly of granodiorite with minor diorite. The LA-ICP-MS U-Pb dating results of zircons from the granodiorite indicate that the intrusion formed in the Early Jurassic (177±2 Ma, MSWD=1.13). Geochemically, these rocks fall into the calc-alkaline to high-K calc-alkaline series, with A/CNK ratios of 0.88-1.12, which are sub-aluminous granites, being of the characteristics of I type granitoids, enrichment in LILE (such as K, Ba, Rb), LREE, Th and U, relatively depleted in HFSE (such as Ta, Nb, Ti, P). The εHf(t) values of the granodiorite vary from ±8.72 to ±12.28, and two-stage model ages (TDM2) vary from 437 to 663 Ma. These characteristics suggest that the primary magma was derived from the remelting of juvenile crustal materials (Neoproterozoic to Early Paleozoic). It is concluded that granodiorite from Miantian intrusion formed in compressional structure setting similar to volcanic arc which could be related to the subduction of the Paleo-Pacific plate beneath the Eurasian continent.
-
Key words:
- zircon U-Pb chronology /
- zircon Hf isotope /
- geochemistry /
- Yanbian
-
图 1 研究区地质略图
1.新生代地层及火山岩;2.中生代地层;3.二叠系;4.仲平岩体;5.棉田岩体;6.其他花岗岩;7.断层;8.采样位置;9.地名;a图据Wu et al., 2011; b图据逄伟,2009; Zhang et al., 2004
Fig. 1. Geological sketch map of the studied area
图 5 岩石TAS(a)和K2O-SiO2图解(b)
a.分界线上方为碱性,下方为亚碱性,据Irvine and Baragar, 1971;①小兴安岭-张广才岭地区基性-超基性岩;②东宁-汪清-珲春地区中基性岩;③小兴安岭-张广才岭地区酸性岩(Wu et al., 2002; 孙德有,2005b;许文良等,2008; Yu et al., 2012; Xu et al., 2013)
Fig. 5. TAS diagram and K2O-SiO2 diagram of the granodiorite in Miantian
图 6 岩石稀土元素球粒陨石标准化配分图解(a)和微量元素原始地幔标准化蛛网图(b)
a.标准化值据Boynton, 1984; b.标准化值据Sun and Mcdonough, 1989
Fig. 6. Chondrite-normalized REE distribution patterns and primitive mantle-normalized trace element spider diagrams of the granodiorite
表 1 花岗闪长岩中锆石LA-ICP-MS U-Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Pb analyses of the granodiorite rocks
样品 Th(10-3) U(10-3) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ t(Ma) 1σ NZ-N7-1 218 529 0.412 02 0.052 85 0.002 72 0.204 51 0.008 60 0.028 07 0.000 43 178 3 NZ-N7-2 279 390 0.715 44 0.053 10 0.006 43 0.201 07 0.023 18 0.027 47 0.000 82 175 5 NZ-N7-3 450 642 0.701 93 0.051 40 0.004 30 0.196 77 0.015 18 0.027 77 0.000 60 177 4 NZ-N7-4 307 498 0.616 80 0.050 57 0.002 43 0.196 36 0.007 52 0.028 16 0.000 42 179 3 NZ-N7-5 171 360 0.475 65 0.052 12 0.003 33 0.206 61 0.011 63 0.028 75 0.000 51 183 3 NZ-N7-6 278 398 0.700 28 0.052 57 0.002 81 0.197 40 0.008 81 0.027 23 0.000 44 173 3 NZ-N7-7 381 624 0.610 49 0.052 57 0.007 89 0.199 56 0.028 81 0.027 53 0.000 99 175 6 NZ-N7-8 145 268 0.540 43 0.051 02 0.003 40 0.199 82 0.011 87 0.028 40 0.000 52 181 3 NZ-N7-9 266 467 0.569 46 0.048 23 0.004 79 0.180 23 0.016 84 0.027 09 0.000 66 172 4 NZ-N7-10 360 669 0.537 67 0.051 32 0.002 29 0.199 14 0.006 84 0.028 13 0.000 43 179 3 NZ-N7-11 218 420 0.519 58 0.050 94 0.004 08 0.198 36 0.014 62 0.028 23 0.000 61 179 4 NZ-N7-12 251 410 0.611 60 0.051 43 0.004 32 0.190 19 0.014 81 0.026 80 0.000 60 170 4 NZ-N7-13 137 329 0.414 37 0.052 02 0.002 89 0.200 26 0.009 45 0.027 91 0.000 48 177 3 表 2 棉田花岗闪长岩主量元素、稀土元素和微量元素含量及有关参数
Table 2. Major, REE and trace element content and parameter of the granodiorite in Miantian
样品 NZ-Y-1 NZ-Y-2 NZ-Y-3 NZ-Y-4 NZ-Y-5 NZ-Y-6 NZ-Y-7 NZ-Y-8 NZ-Y-9 SiO2 62.19 63.13 64.08 63.04 63.22 63.10 63.70 62.61 63.41 TiO2 0.70 0.68 0.62 0.64 0.68 0.66 0.66 0.67 0.71 Al2O3 16.31 16.24 15.97 16.11 15.97 16.46 16.05 15.91 16.37 Fe2O3 5.53 5.06 4.59 5.01 5.17 5.09 4.97 5.02 5.21 MnO 0.09 0.08 0.07 0.08 0.08 0.08 0.08 0.09 0.08 MgO 2.31 2.19 1.98 2.11 2.17 2.08 2.19 2.12 2.24 CaO 4.88 4.53 2.82 4.66 4.46 4.45 4.49 4.88 4.48 Na2O 4.00 3.94 3.70 3.86 3.81 3.88 3.84 3.82 3.93 K2O 2.38 2.43 2.87 2.59 2.43 2.26 2.31 2.62 2.34 P2O5 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 LOI 1.04 1.32 2.93 1.25 1.30 1.49 1.15 1.96 1.03 Total 99.64 99.80 99.82 99.56 99.49 99.75 99.63 99.92 100.00 ALK 6.38 6.37 6.57 6.45 6.24 6.14 6.15 6.44 6.27 Na2O/K2O 1.67 1.61 1.28 1.49 1.56 1.72 1.67 1.45 1.67 A/CNK 0.91 0.89 0.92 1.04 0.91 0.94 1.12 0.91 0.94 Mg# 44.70 45.30 45.40 45.50 45.60 46.00 46.10 46.20 46.60 La 20.80 19.20 16.90 18.80 19.00 21.00 18.80 18.50 17.20 Ce 43.40 39.60 35.50 37.30 39.30 43.80 38.90 37.10 35.30 Pr 5.14 4.65 4.13 4.21 4.67 5.24 4.59 4.29 4.15 Nd 18.90 16.90 14.80 14.80 17.40 18.80 16.90 15.50 15.00 Sm 3.95 3.45 2.94 2.98 3.63 4.03 3.43 3.18 3.08 Eu 0.90 0.85 0.69 1.05 0.84 0.89 0.89 0.88 0.84 Gd 2.97 2.66 1.99 3.47 2.93 3.21 2.85 2.79 2.67 Tb 0.47 0.41 0.29 0.50 0.45 0.51 0.43 0.43 0.41 Dy 3.11 2.65 1.86 3.01 2.95 3.25 2.71 2.63 2.51 Ho 0.62 0.54 0.37 0.60 0.60 0.67 0.56 0.54 0.52 Er 1.70 1.45 1.07 1.67 1.60 1.74 1.50 1.41 1.39 Tm 0.29 0.25 0.18 0.29 0.28 0.30 0.25 0.25 0.23 Yb 1.81 1.57 1.21 1.72 1.70 1.83 1.58 1.45 1.44 Lu 0.28 0.24 0.19 0.25 0.26 0.28 0.24 0.24 0.22 Y 17.70 15.80 10.10 15.90 16.60 18.80 15.70 14.90 14.80 ΣREE 104.00 94.40 82.10 90.70 95.60 105.60 93.60 89.20 85.00 LREE 93.10 84.70 75.00 79.10 84.80 93.80 83.50 79.50 75.60 HREE 11.30 9.80 7.20 11.50 10.80 11.80 10.10 9.74 9.39 LREE/HREE 8.27 8.66 10.47 6.88 7.88 7.95 8.25 8.16 8.05 LaN/YbN 8.24 8.77 10.02 7.84 8.02 8.23 8.53 9.15 8.57 δEu 0.80 0.86 0.87 1.00 0.79 0.76 0.87 0.90 0.90 δCe 1.03 1.03 1.04 1.03 1.02 1.02 1.03 1.02 1.02 Rb 73.40 73.30 91.70 88.40 72.80 65.00 66.60 77.30 71.90 Ba 418.00 420.00 479.00 458.00 420.00 409.00 431.00 537.00 439.00 Th 10.80 10.90 13.30 9.30 10.70 10.80 10.30 8.70 7.96 U 2.11 1.96 1.39 2.13 3.15 3.68 3.09 2.51 1.74 Nb 5.60 5.30 5.10 5.50 5.60 5.80 5.60 5.20 5.30 Ta 0.60 0.60 0.50 0.60 0.60 0.60 0.60 0.50 0.50 Sr 366.00 365.00 344.00 433.00 386.00 397.00 383.00 439.00 389.00 Nd 18.90 16.90 14.80 14.80 17.40 18.80 16.90 15.50 15.00 Zr 150.00 140.00 130.00 120.00 150.00 130.00 130.00 140.00 160.00 Hf 4.00 3.70 3.60 3.30 4.20 3.50 3.70 3.80 4.00 Nb/Ta 9.33 8.83 10.20 9.17 9.33 9.67 9.33 10.40 10.6 Rb/Sr 0.20 0.20 0.27 0.20 0.19 0.16 0.17 0.19 0.18 Hf/Th 0.37 0.34 0.27 0.35 0.39 0.33 0.36 0.44 0.50 La/Nb 3.71 3.62 3.31 3.42 3.39 3.62 3.36 3.56 3.25 注:主量元素单位为10-2;微量、稀土元素单位为10-6,ALK=K2O+Na2O;A/CNK=Al2O3/(CaO+Na2O+K2O),分子比;Na2O/K2O重量比;Mg#=100×(MgO/40.31)/(MgO/40.31+Fe2O3T×2/159.7). 表 3 棉田花岗闪长岩锆石Hf同位素分析结果
Table 3. LA-ICPMS zircon U-Pb analyses of the granodiorite in Miantian
样品 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 176Hf/177Hf(corr) 2σ εHf(0) εHf(t) 2σ TDM1(Hf) TDM2(Hf) fLu/Hf NZ-N7-1 178 0.038 490 0.001 218 0.282 963 0.282 940 0.000 017 5.94 9.71 0.59 445 602 -0.96 NZ-N7-2 175 0.037 450 0.001 153 0.282 937 0.282 914 0.000 018 5.01 8.72 0.64 482 663 -0.97 NZ-N7-3 177 0.048 968 0.001 568 0.282 973 0.282 950 0.000 016 6.28 9.98 0.58 436 584 -0.95 NZ-N7-4 179 0.025 767 0.000 773 0.282 979 0.282 956 0.000 018 6.50 10.34 0.64 418 562 -0.98 NZ-N7-5 183 0.040 833 0.001 175 0.283 011 0.282 988 0.000 016 7.62 11.50 0.55 377 491 -0.96 NZ-N7-6 173 0.042 915 0.001 219 0.283 007 0.282 984 0.000 016 7.49 11.15 0.57 383 506 -0.96 NZ-N7-7 175 0.042 466 0.001 236 0.283 025 0.283 002 0.000 015 8.15 11.85 0.54 356 462 -0.96 NZ-N7-8 181 0.043 538 0.001 231 0.282 954 0.282 931 0.000 016 5.63 9.46 0.56 458 620 -0.96 NZ-N7-9 172 0.059 948 0.001 793 0.283 017 0.282 994 0.000 017 7.86 11.44 0.61 373 486 -0.95 NZ-N7-10 179 0.044 000 0.001 264 0.283 035 0.283 012 0.000 017 8.50 12.28 0.59 342 437 -0.96 NZ-N7-11 179 0.046 063 0.001 391 0.282 960 0.282 937 0.000 012 5.82 9.59 0.42 452 610 -0.96 NZ-N7-12 170 0.052 283 0.001 667 0.283 018 0.282 995 0.000 015 7.90 11.45 0.55 370 484 -0.95 NZ-N7-13 177 0.045 334 0.001 643 0.282 992 0.282 969 0.000 015 6.96 10.65 0.54 409 541 -0.95 -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733): 252-255. doi: 10.1038/20426 [2] Amelin, Y., Lee, D.C., Halliday, A.N., 2000. Early-Middle Archean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotope Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225. doi: 10.1016/S0016-7037(00)00493-2 [3] Anderson, T., 2002. Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [4] Bachelor, R.A., Bowden, P., 1985. Petrologic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. doi: 10.1016/0009-2541(85)90034-8 [5] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. doi: 10.1016/S0012-821X(97)00040-X [6] Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meterorite Studies. In: Henderson, P., ed., Rare Earth Elements Geochemistry. Elseriver, Amsterdam, 63-114. [7] Brown, G.C., Thorpe, R.S., Webb, P.C., 1984. The Geochemical Characteristics of Granitoids in Constrasting Arcs and Comments on Magma Sources. Journal of the Geological Society, 141: 411-426. doi: 10.1144/gsjgs.141.3.0413 [8] Bureau of Geology and Mineral Resources of Jilin Province, 1988. Regional Geology of Jilin Province. Geological Publishing House, Beijing (in Chinese). [9] Chen, B., Jahn, B.M., Tian, W., 2009. Evolution of the Solonker Suture Zone: Constrains from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Sr-Nd Isotope Compositions of Subduction- and Collision-Related Magmas and Forearc Sediments. Journal of Asian Earth Science, 34(3): 245-257. doi: 10.1016/j.jseaes.2008.05.007 [10] Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. doi: 10.1039/B206707B [11] Condie, K.C., 1989. Geochemical Changes in Basalts and Andesites across the Archean-Proterozoic Boundary: Identification and Significance. Lithos, 23(1-2): 1-18. doi: 10.1016/0024-4937(89)90020-0 [12] Francalanci, L., Taylor, S.R., McCulloch, M.T., et al., 1993. Geochemical and Isotopic Variations in the Calc-Alkaline Rocks of Aeolian Arc, Southern Tyrrhern Sea, Italy: Constraints on Magma Genesis. Contributions to Mineralogy and Petrology, 113(3): 300-313. doi: 10.1007/BF00286923 [13] Fang, W.C., 1992. Granite and Mineralization in Jilin Province. Jilin Science and Technology Press, Changchun (in Chinese). [14] Ge, W.C., Wu, F.Y., Zhou, C.Y., et al., 2007. Porphyry Cu-Mo Deposits in the Eastern Xing'an-Mongolian Orogenic Belt: Mineralization Ages and Their Geodynamic Implications. Chinese Science Bulletin, 52(24): 3416-3427. doi: 10.1007/s11434-007-0466-8 [15] Geng, J.Z., Li, H.K., Zhang, J., et al., 2011. Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract). http://www.researchgate.net/publication/279905452_Zircon_Hf_isotope_analysis_by_means_of_LA-MC-ICP-MS [16] Gill, J.B., 1987. Early Geochemical Evolution of an Oceanic Island Arc and Back Arc: Fiji and the South Fiji Basin. The Journal of Geology, 95(5): 589-615. doi: 10.1086/629158 [17] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8 [18] Guo, F., Fan, W.M., Li, C.W., et al., 2009. Early Cretaceous Highly Positive εNd(t) Felsic Volcanic Rocks from the Hinggan Mountains, NE China: Origin and Implications for Phanerozoic Crustal Growth. International Journal of Earth Sciences, 98(6): 1395-1411. doi: 10.1007/s00531-008-0362-8 [19] Irvine, T.N., Baragar, W.R.A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. doi: 10.1139/e71-055 [20] Jahn, B.M., Wu, F.Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotopic Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82-92. doi: 10.18814/epiiugs/2000/v23i2/001 [21] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [22] Liu, Y.S., Gao, S, Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Periotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [23] Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Execl. No. 4. Berkeley Geochronology Center Special Publication, Berkeley, California. [24] Meng, Q.L., Zhou, Y.C., Chai, S.L., 2001. Porphyry Copper-Hydrothermal Vein Type Gold Deposit in Yanbian Area, Eastern China. Jilin Science and Technology Press, Changchun (in Chinese). [25] Nowell, G.M., Kempton, P.D., Noble, S.R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionization Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 149(3-4): 211-233. doi: 10.1016/S0009-2541(98)00036-9 [26] Patchett, P.J., Tatsumoto, M., 1980. A Routine High-Precision Method for Lu-Hf Isotope Geochemistry and Chronology. Contrib. Mineral. Petrol. , 75(3): 263-267. doi: 10.1007/BF01166766 [27] Pan, L.M., 1991. Geological and Geochemical Characteristics of the Granitic Masses in the Xintian-Miantian Area, Yanbian. Jilin Geology, (3): 61-69 (in Chinese with English abstract). [28] Pang, W., 2009. Metallogenic Model of Epithermal and Low-Sulfidation Gold Deposit, Yanbian Area(Dissertation). Jilin University, Changchun (in Chinese). [29] Pei, F.P., Xu, W. L, Yang, D.B., et al., 2008. Mesozoic Volcanic Rocks in the Southern Songliao Basin: Zircon U-Pb Ages and Their Constraints on the Nature of Basin Basement. Earth Science—Journal of China University of Geosciences, 33(5): 603-617(in Chinese with English abstract). doi: 10.3799/dqkx.2008.075 [30] Pei, F.P., Xu, W.L., Yang, D.B., et al., 2009. Heterogeneity of Late Mesozoic Deep Lithosphere beneath the Northeastern North China: Evidence from Elemental and Sr-Nd Isotopic Geochemistry of Mesozoic Vocanic Rocks in the Southern Jilin Province, China. Acta Petrologica Sinica, 25(8): 1962-1974 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200908022.htm [31] Peng, Y.J., 1996. Division of Carboniferous-Permian Biogeographic Province in Jilin Province. Jilin Geology, 15(1): 12-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JLDZ199601001.htm [32] Peng, Y.J., Chen, Y.J., 2007. Location of Structural Boundrary between Ji-Hei Orogenic Zone and Kaiyuan-Shancheng Town Section of North China Platform. Global Geology, 26(1): 1-6, 74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ200701000&dbcode=CJFD&year=2007&dflag=pdfdown [33] Qiu, J.X., 2004. Opening-Closing Tectonics and Magmatic Activity. Geological Bulletin of China, 23(3): 222-231 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200403005.htm [34] Salters, V.J.M., Hart, S.R., 1991. The Mantle Sources of Ocean Ridges, Island and Arcs: The Hf-Isotope Connection. Earth and Planetary Science Letters, 104(2-4): 364-380. doi: 10.1016/0012-821X(91)90216-5 [35] Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Scinece, 293(5530): 683-687. doi: 10.1126/science.1061372 [36] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implication for Mantle Composition and Processes. In: Saunder, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geological Society Special Publication, 2: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [37] Sun, D.Y., Wu, F.Y., Gao, S., et al., 2005a. Confirmation of Two Episodes of A-Type Granite Emplacement during Late Triassic and Early Jurassic in the Central Jilin Province, and Their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area, China. Earth Science Frontiers, 12(2): 263-275 (in Chinese with English abstract). [38] Sun, D.Y., Suzuki, K., Wu, F.Y., et al., 2005b. CHIME Dating and Its Application for Mesozoic Granites of Huanggoushan, Jilin Province. Geochimica, 34(4): 305-314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200504001.htm [39] Tang, J., Xu, W.L., Wang, F., et al., 2011. Petrogenesis of Bimodal Vocanic Rocks from Maoershan Formation in Zhangguangcai Range: Evidence from Geochronology and Gochemistry. Global Geology, 30(4): 508-520 (in Chinese with English abstract). http://www.researchgate.net/publication/287113146_Petrogenesis_of_bimodal_volcanic_rocks_from_maoershan_formation_in_zhangguangcai_range_Evidence_from_geochronology_and_geochemistry [40] Weaver, B.L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2-4): 381-397. doi: 10.1016/0012-821X(91)90217-6 [41] Wei, H.Y., Sun, D.Y., Ye, S.Q., et al., 2012. Zircon U-Pb Ages and Its Geological Significance of the Granitic Rocks in the Yichun-Hegang Region, Southeastern Xiao Hinggan Mountains. Earth Science—Journal of China University of Geosciences, 37(Suppl. ): 51-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2012S1008.htm [42] Wen, S., Li, B.L., Li, L.B., et al., 2013. Zircon U-Pb Age and Geochemistry of Nanquanyan Diorite in Lanjia Gold Deposit, Jilin Province. Earth Science—Journal of China University of Geosciences, 38(2): 305-315 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.030 [43] Wu, F.Y., Sun, D.Y., Lin, Q., 1999. Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China. Acta Petrologica Sinica, 15(2): 181-189 (in Chinese with English abstract). http://www.oalib.com/paper/1471776 [44] Wu, F.Y., Jahn, B.M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evience from the Granites in Northeastern China. Tectonophysics, 328(1-2): 89-113. doi: 10.1016/S0040-1951(00)00179-7 [45] Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on their Petrogenesis. Chemical Geology, 187: 143-173. doi: 10.1016/S0009-2541(02)00018-9 [46] Wu, F.Y., Wilde, S.A.W., Zhang, G.L., et al., 2004. Geochronology and Petrogenesis of the Post-Orogenic Cu-Ni Sulfide-Bearing Mafic-Ultramafic Complexes. Journal of Asian Earth Sciences, 23(5): 781-797. doi: 10.1016/S1367-9120(03)00114-7 [47] Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003 [48] Wu, F.Y., Yang, J.H., Lo, C.H., et al., 2007a. The Heilongjiang Group: A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China. Island Arc. , 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x [49] Wu, F.Y., Zhao, G.C., Sun, D.Y., et al., 2007b. The Hulan Group: Its Role in the Evolition of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30: 542-556. doi: 10.1016/j.jseaes.2007.01.003 [50] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014 [51] Xiao, W.J., Zhang, L.C., Qin, K.Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tienshan(China): Implications for the Continental Growth of Central Asian. American Journal of Science, 304(4): 370-395. doi: 10.2475/ajs.304.4.370 [52] Xu, W.L., Ji, W.Q., Pei, F.P., et al., 2009. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China: Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 34(3): 392-402. doi: 10.1016/j.jseaes.2008.07.001 [53] Xu, W.L., Pei, F.P., Wang, F., et al., 2013. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167-193. doi: 10.1016/j.jseaes.2013.04.003 [54] Xu, W.L., Ge, W.C., Pei, F.P., et al., 2008. Geochronological Frame of Mesozoic Volcanism in NE China and Its Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 27(Suppl. ): 286-287 (in Chinese with English abstract). [55] Xu, M.J., Xu, W.L., Wang, F., et al., 2013. Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing'an Range, NE China and Its Tectonic Implications. Acta Petrologica Sinica, 29(2): 354-368 (in Chinese with English abstract). http://www.researchgate.net/publication/282283160_Geochronology_and_geochemistry_of_the_Early_Jurassic_granitoids_in_the_central_Lesser_Xing'an_Range_NE_China_and_its_tectonic_implications/download [56] Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246: 336-352. doi: 10.1016/j.epsl.2006.04.029 [57] Yu, J.J., Wang, F., Xu, W.L., et al., 2012. Early Jurassic Mafic Magmatism in the Lesser Xing'an-Zhangguangcai Range, NE China, and Its Tectonic Implications: Constrains from Zircon U-Pb Chronology and Geochemistry. Lithos, 142-143: 256-266. doi: 10.1016/j.lithos.2012.03.016 [58] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [59] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003. Determination of U-Pb Age and Rare Earth Element Concentrations of Zircons from Cenozoic Intrusions in Northeastern China by Laser Ablation ICP-MS. Chinese Science Bulletin, 48(14): 1511-1520 (in Chinese). doi: 10.1360/csb2003-48-14-1511 [60] Zhang, Y.B., 2002. The Isotopic Geochronologic Frame of Granitic Magmatism in Yanbian Area(Dissertation). Jilin University, Changchun (in Chinese). [61] Zhang, Y.B., Wu, F.Y., Wilde, S.A., et al., 2004. Zircon U-Pb Ages and Tectonic Implications of 'Early Paleozoic' Granitoids at Yanbian, Jilin Province, Northeast China. Island Arc, 13(4): 484-505. doi: 10.1111/j.1440-1738.2004.00442.x [62] Zhao, C.J., Peng, Y.J., Dang, Z.X., et al., 1996. Tectonic Framework and Crust Evolution of Eastern Jilin and Heilongjiang Provinces. Liaoning University Publishing House, Shenyang, 124-139 (in Chinese). [63] Zhao, H.G., 2007. Study on the Metallogenesis and Models in Mesozoic Epithermal Gold Deposits in Yanbian, Jilin Province(Dissertation). Jilin University, Changchun (in Chinese). [64] Zhao, Q.G., Xu, W.L., Jin, K., et al., 2005. The Magma Source of Mesozoic Volcanic Rocks in Yanbian Area: Evidence from Sr-Nd Isotopes and Deep-Seated Xenoliths(Xenocrysts). Journal of Jilin University(Earth Science Edition), 35(4): 416-422 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200504001.htm [65] Zhao, Y., Yang, Z.Y., Ma, X.H., 1994. Geotectonic Transition from Paleoasian System and Paleotethyan System to Paleopacific Active Continental Margin in Eastern Asia. Scientia Geologica Sinica, 29(2): 105-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX402.000.htm [66] Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al., 2009. The Onset of Pacific Margin Accretion in NE China: Evidence from the Heilongjiang High-Pressure Metamorphic Belt. Tectonphysics, 478(3-4): 230-246. doi: 10.1016/j.tecto.2009.08.009 [67] 方文昌, 1992. 吉林省花岗岩类及成矿作用. 长春: 吉林科学技术出版社. [68] 耿建珍, 李怀坤, 张健, 等, 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 [69] 吉林省地质矿产局, 1988. 吉林省区域地质志. 北京: 地质出版社. [70] 孟庆丽, 周永昶, 柴社立, 2001. 中国延边东部斑岩-热液脉型铜金矿床. 吉林: 吉林科学技术出版社. [71] 潘丽敏, 1991. 延边地区新田-棉田花岗质岩体地质地球化学特征. 吉林地质, (3): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ199103007.htm [72] 逄伟, 2009. 延边地区浅成低温低硫化型金矿床的成矿模式研究(硕士学位论文). 长春: 吉林大学. [73] 裴福萍, 许文良, 杨德彬, 等, 2008. 松辽盆地南部中生代火山岩: 锆石U-Pb年代学及其对基底性质的制约. 地球科学——中国地质大学学报, 33(5): 603-617. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805005.htm [74] 裴福萍, 许文良, 杨德彬, 等, 2009. 华北克拉通东北缘岩石圈深部物质组成的不均一性: 来自吉林南部中生代火山岩元素及Sr-Nd同位素地球化学的证据. 岩石学报, 25(8): 1962-1974. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908022.htm [75] 彭玉鲸, 1996. 吉林省石炭-二叠纪生物地理区的划分. 吉林地质, 15(1): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ199601001.htm [76] 彭玉鲸, 陈跃军, 2007. 吉黑造山带与华北地台开原-山城镇段构造边界位置. 世界地质, 26(1) : 1-6, 74. doi: 10.3969/j.issn.1004-5589.2007.01.001 [77] 邱家骧, 2004. 开合构造与岩浆活动. 地质通报, 23(3): 222-231. doi: 10.3969/j.issn.1671-2552.2004.03.008 [78] 孙德有, 吴福元, 高山, 等, 2005a. 吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约. 地学前缘, 12(2): 263-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY20050200Z.htm [79] 孙德有, 铃木和博, 吴福元, 等, 2005b. 吉林省南部荒沟山地区中生代花岗岩CHIME定年. 地球化学, 34(4): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200504001.htm [80] 唐杰, 许文良, 王枫, 等, 2011. 张广才岭帽儿山组双峰式火山岩成因: 年代学与地球化学证据. 世界地质, 30(4): 508-520. doi: 10.3969/j.issn.1004-5589.2011.04.002 [81] 魏红艳, 孙德有, 叶松青, 等, 2012. 小兴安岭东南部伊春-鹤岗地区花岗质岩石锆石U-Pb年龄测定及其地质意义. 地球科学——中国地质大学学报, 37(增刊): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S1008.htm [82] 闻爽, 李碧乐, 李立宝, 等, 2013. 吉林省兰家金矿南泉眼闪长岩U-Pb年代学和地球化学特征. 地球科学——中国地质大学学报, 38(2): 305-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201302011.htm [83] 吴福元, 孙德有, 林强, 1999. 东北地区显生宙花岗岩的成因与地壳增生. 岩石学报, 15(2): 181-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.003.htm [84] 许文良, 葛文春, 裴福萍, 等, 2008. 东北地区中生代火山作用的年代学格架及其构造意义. 矿物岩石地球化学通报, 27(增刊): 286-287. [85] 徐美君, 许文良, 王枫, 等, 2013. 小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义. 岩石学报, 29(2): 354-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302003.htm [86] 袁洪林, 吴福元, 高山, 等, 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 [87] 张艳斌, 2002. 延边地区花岗质岩浆活动的同位素地质年代学格架(博士论文). 长春: 吉林大学. [88] 赵春荆, 彭玉鲸, 党增欣, 等, 1996. 吉黑东部构造格架及地壳演化. 沈阳: 辽宁大学出版社, 124-139. [89] 赵宏光, 2007. 延边中生代浅成热液铜金矿床的成矿模式研究(硕士学位论文). 长春: 吉林大学. [90] 赵全国, 许文良, 靳克, 等, 2005. 延边地区中生代火山岩的岩浆源区: 来自Sr-Nd同位素和深源捕虏体(晶)的证据. 吉林大学学报(地球科学版), 35(4): 416-422. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200504001.htm [91] 赵越, 杨振宇, 马醒华, 1994. 东亚大地构造发展的重要转折. 地质科学, 29(2): 105-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX402.000.htm