• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国大陆科学钻探主孔正片麻岩磁性及深部流体活动

    曾庆理 刘庆生 郑建平 刘志峰 王红才

    曾庆理, 刘庆生, 郑建平, 刘志峰, 王红才, 2014. 中国大陆科学钻探主孔正片麻岩磁性及深部流体活动. 地球科学, 39(12): 1915-1926. doi: 10.3799/dqkx.2014.176
    引用本文: 曾庆理, 刘庆生, 郑建平, 刘志峰, 王红才, 2014. 中国大陆科学钻探主孔正片麻岩磁性及深部流体活动. 地球科学, 39(12): 1915-1926. doi: 10.3799/dqkx.2014.176
    Zeng Qingli, Liu Qingsheng, Zheng Jianping, Liu Zhifeng, Wang Hongcai, 2014. Magnetism of Granitic Gneiss from Chinese Continental Scientific Drilling Main Hole and Fluid Activities. Earth Science, 39(12): 1915-1926. doi: 10.3799/dqkx.2014.176
    Citation: Zeng Qingli, Liu Qingsheng, Zheng Jianping, Liu Zhifeng, Wang Hongcai, 2014. Magnetism of Granitic Gneiss from Chinese Continental Scientific Drilling Main Hole and Fluid Activities. Earth Science, 39(12): 1915-1926. doi: 10.3799/dqkx.2014.176

    中国大陆科学钻探主孔正片麻岩磁性及深部流体活动

    doi: 10.3799/dqkx.2014.176
    基金项目: 

    "973"项目 2012CB416604

    国家自然科学基金 41139315

    国家自然科学基金 91214204

    国家自然科学基金 41374094

    中国博士后科学基金面上资助 2013M542084

    国家自然科学基金青年基金 41304050

    详细信息
      作者简介:

      曾庆理(1984-), 男, 博士后, 主要从事深部岩石磁性及岩石地球物理性质研究.E-mail: Zengqingli@gmail.com

    • 中图分类号: P318.4

    Magnetism of Granitic Gneiss from Chinese Continental Scientific Drilling Main Hole and Fluid Activities

    • 摘要: 通过对中国大陆科学钻探工程主孔花岗质片麻岩进行详细的岩石磁学研究及岩石矿物学分析表明: 花岗质片麻岩磁化率(0.570×10-7~120.450×10-7m3·kg-1, 平均29.996×10-7m3·kg-1)在主孔所有岩石中仅次于蛇纹石化石榴石橄榄岩, 而其天然剩余磁化强度(0.002×10-3~2.109×10-3Am2·kg-1, 平均0.210×10-3Am2·kg-1)则是所有岩性中最低的.磁化率随温度变化曲线、交变退磁曲线及磁滞回线特征表明, 花岗质片麻岩中磁性矿物组合主要成分为磁铁矿, 小部分样品中含有赤铁矿, 其中磁铁矿以多畴为主, 伪单畴磁铁矿仅在少量样品中出现.和同为完全退变质岩的角闪岩(完全退变质榴辉岩)相比, 花岗质片麻岩具有相似的磁性矿物组合, 但其磁铁矿的颗粒明显较大.多畴磁铁矿的形成, 可能和超高压变质岩折返过程中, 花岗质片麻岩较强的流体活动相关.部分分布于花岗质片麻岩主体岩性段外的样品, 具有较高的天然剩余磁化强度, 则可能反映了花岗质片麻岩及周围榴辉岩之间的流体交换.

       

    • 图  1  CCSD主孔位置及采样点位(Xu et al., 2009b)

      TLF.郯庐断裂;JXF.嘉山-响水断裂;WQYF.武梁-青岛-烟台断裂

      Fig.  1.  Location map of CCSD main hole with the simplified lithological profile of the depth interval 100-2 000 m and sample location

      图  2  花岗质片麻岩显微照片

      a, b.187和152号样品透射光照片;c, d.样品252反射光照片;e, f.样品278和190反射光照片.Amp.角闪石;Bt.黑云母;Epi.绿帘石;Hem.赤铁矿;Ilm.钛铁矿;Mt.磁铁矿;Opaque.不透明矿物;Pl.斜长石;Py.辉石;Pyr.黄铁矿;Q.石英;Spn.榍石

      Fig.  2.  Microscopy photo of granitic gneiss under transmitted and reflected light

      图  3  代表性样品中不透明矿物显微激光拉曼光谱分析

      a.黄铁矿; b.具赤铁矿反应边的磁铁矿; c.和绿帘石共生的拉长型磁铁矿; d.赤铁矿-钛铁矿颗粒

      Fig.  3.  Micro Raman spectrum of typical opaque mineral of the granitic gneiss

      图  4  代表性样品的典型磁滞回线(顺磁性校正后)

      Fig.  4.  Typical hysteresis curves (after paramagnetic slope correction) of selected samples

      图  5  代表性样品的热磁曲线特征(升降温曲线如箭头所示)

      a.229号; b.230号; c.259号; d.266号; e.278号

      Fig.  5.  χ-T curves for representative samples

      图  6  花岗质片麻岩代表性样品交变退磁(AF demagnetization)曲线

      Fig.  6.  AF demagnetization curves of typical samples

      图  7  正片麻岩Mrs/χ v.s. Bcr交会图(Perters and Dekkers, 2003)

      Fig.  7.  Mrs/χ vs Bcr plot of granitic gneiss

      图  8  片麻岩样品Day氏图(Dunlop, 2002)

      Fig.  8.  Day-plot of gneiss samples

      图  9  CCSD主孔100~2 000 m花岗质片麻岩样品NRM-χ交会

      Fig.  9.  NRM-χ plot for granitic gneiss in CCSD MH 100-2 000 m

      表  1  花岗质片麻岩样品密度、磁化率及天然剩余磁化强度统计

      Table  1.   The summary of density, susceptibility and NRM of granitic gneiss

      类别 ρ (g·cm-3) χ(10-7 m3·kg-1) NRM(10-3 Am2·kg-1) Q
      全体样品 范围 2.581~2.878 0.570~120.450 0.002~2.109 0.100~28.590
      全体样品 Mean±SD 2.649±0.039 29.996±32.418 0.210±0.444 2.562±5.548
      主体岩性段 范围 2.606~2.878 0.570~120.450 0.003~1.142 0.100~20.310
      内样品 Mean±SD 2.645±0.040 22.988±25.478 0.098±0.252 1.573±3.582
      主体岩性段 范围 2.581~2.693 0.590~115.240 0.002~2.109 0.150~28.590
      外样品 Mean±SD 2.653±0.030 49.682±40.581 0.504±0.663 5.197±8.452
      下载: 导出CSV

      表  2  代表性样品磁滞回线参数

      Table  2.   Magnetic hysteresis parameters of selected samples

      编号 深度(m) Mrs(10-3 Am2·kg-1) Ms(10-3 Am2·kg-1) Bc(mT) Bcr(mT) Mrs/χ(kAm-1) Mrs/Ms Bcr/Bc
      187 1 023.30 9.256 4 101.900 0.402 10.3 0.738 0.002 25.622
      204 1 103.10 2.431 302.732 1.080 14.3 2.524 0.008 13.241
      207 1 113.85 3.820 1 326.527 0.515 12.1 0.667 0.003 23.495
      210 1 134.09 10.795 2 914.471 0.594 12.6 1.084 0.004 21.212
      219 1 175.38 5.510 1 201.784 0.747 17.3 1.042 0.005 23.159
      222 1 191.81 0.635 19.326 5.050 66.2 11.437 0.033 13.109
      224 1 200.00 2.125 249.313 1.370 19.4 1.667 0.009 14.161
      227 1 216.50 1.941 8.124 26.600 35.0 27.190 0.239 1.316
      229 1 227.48 1.178 26.673 6.970 92.9 9.567 0.044 13.329
      230 1 242.50 4.843 258.580 2.820 56.3 3.527 0.019 19.965
      239 1 305.17 1.774 282.314 1.140 24.2 1.491 0.006 21.228
      240 1 313.26 0.573 5.487 16.600 196.0 14.111 0.105 11.807
      243 1 343.19 0.805 227.930 0.613 21.3 0.734 0.004 34.747
      249 1 394.38 0.876 165.494 0.916 20.9 1.155 0.005 22.817
      251 1 420.00 2.073 639.551 0.621 17.0 0.829 0.003 27.375
      252 1 422.50 6.375 886.693 1.080 14.4 1.420 0.007 13.333
      255 1 443.50 3.532 997.163 0.700 12.7 0.836 0.004 18.143
      259 1 475.00 5.466 578.362 1.740 16.2 2.672 0.009 9.310
      266 1 514.50 8.757 1 999.339 0.731 14.5 1.004 0.004 19.836
      268 1 523.20 2.716 271.584 1.610 16.2 2.125 0.010 10.062
      274 1 552.65 10.774 310.391 4.820 22.0 6.149 0.035 4.564
      278 1 591.50 18.740 476.798 6.120 27.8 11.053 0.039 4.542
      318 1 843.57 3.910 82.713 9.280 111.0 10.576 0.047 11.961
      注:Mrs.饱和等温剩余磁化强度; Ms.饱和磁化强度; Bc.矫顽力; Bcr.剩磁矫顽力; χ.低场磁化率.
      下载: 导出CSV
    • [1] Abalos, B., Aranguren, A., 1998. Anisotropy of Magnetic Susceptibility of Eclogites: Mineralogical Origin and Correlation with the Tectonic Fabric (Cabo Ortegal, Spain). Geodinamica Acta, 11(6): 271-283. doi: 10.1016/S0985-3111(99)80017-5
      [2] Cong, B.L., Zhang, R.Y., Liou, J.G., et al., 1996. Metamorphic Evolution of UHPM Rocks. In: Cong, B.L., ed. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Springer, Berlin, 128-160.
      [3] Chen, R.X., Zheng, Y.F., Gong, B., et al., 2007. Origin of Retrograde Fluid in Ultrahigh-Pressure Metamorphic Rocks: Constraints from Mineral Hydrogen Isotope and Water Content Changes in Eclogite-Gneiss Transitions in the Sulu Orogen. Geochimica et Cosmochimica Acta, 71(9): 2299-2325. doi: 10.1016/j.gca.2007.02.012
      [4] Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis Properties of Titanomagnetites: Grain-Size and Compositional Dependence. Physics of the Earth and Planetary Interiors, 13(4): 260-267. doi: 10.1016/0031-9201(77)90108-X
      [5] Dunlop, D.J., 1990. Developments in Rock Magnetism. Rep. Prog. Phys. , 53(6): 707-792. doi: 10.1088/0034-4885/53/6/002
      [6] Dunlop, D.J., 2012. Magnetic Recording in Rocks. Physics Today, 65(6): 31-37. doi: 10.1063/PT.3.1604
      [7] Dunlop, D.J., Özdemir, Ö., 2001. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, 262-287.
      [8] de Faria, D.L.A., Silva, S.V., de Oliveria, M.T., 1997. Microspectroscopy of Some Iron Oxides Raman and Oxyhydroxides. Journal of Raman Spectroscopy, 28(11): 873-878. doi:10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B
      [9] Fu, B., Touret, J.L.R., Zheng, Y.F., 2001. Fluid Inclusions in Coesite-Bearing Eclogites and Jadeite Quartzites at Shuanghe, Dabie Shan, China. Journal of Metamorphic Geology, 19(5): 31-548. doi: 10.1046/j.0263-4929.2001.00327.x
      [10] Geuna, S.E., McEnroe, S.A., Robinson, P., et al., 2008. Magnetic Petrology of the Devonian Achala Batholith, Argentina: Titanohaematite as an Indicator of Highly Oxidized Magma during Crystallization and Cooling. Geophysical Journal International, 175(3): 925-941. doi: 10.1111/j.1365-246X.2008.03964.x
      [11] Harrison, R.J., Feinberg, J.M., 2009. Mineral Magnetism: Providing New Insights into Geoscience Processes. Elements, 5(4): 209-214. doi: 10.2113/gselements.5.4.209
      [12] Hacker, B.R., Wallis, S.R., McWilliams, M.O., et al., 2009. 40Ar/39Ar Constraints on the Tectonic History and Architecture of the Ultrahigh-Pressure Sulu Orogen. Journal of Metamorphic Geology, 27(9): 827-844. doi: 10.1111/j.1525-1314.2009.00840.x
      [13] Hirajima, T., Ishiwatari, A., Cong, B., et al., 1990. Identification of Coesite in Mengzhong Eclogite from Donghai County, Northeastern Jiangsu Province, China. Mineralogical Magazine, 45: 579-583. http://ci.nii.ac.jp/naid/80005837940
      [14] Liang, F.H., Su, S.G., You, Z.D., et al., 2005. Retrograde Metamorphism of Eclogites from the Main Hole (0-2000m) of the Chinese Continental Scientific Drilling, Donghai, Jiangsu Province. Geology in China, 32(2): 218-229 (in Chinese with English abstract).
      [15] Liou, J.G., Zhang, R.Y., 1996. Occurrences of Intergranular Coesite in Ultrahigh-P Rocks from the Sulu Region, Eastern China: Implications for Lack of Fluid during Exhumation. American Mineralogist, 81: 1217-1221. doi: 10.2138/am-1996-9-1020
      [16] Liu, F.L., Xu, Z.Q., Yang, J.S., et al., 2004. Geochemical Characteristics and UHP Metamorphism of Granite Gneisses in the Main Drilling Hole of Chinese Continental Scientific Drilling Project and It's Adjacent Area. Acta Petrologica Sinica, 20(1): 9-26 (in Chinese with English abstract). http://www.researchgate.net/publication/279593208_Geochemical_characteristics_and_UHP_metamorphism_of_granitic_gneisses_in_the_main_drilling_hole_of_Chinese_Continental_Scientific_Drilling_Project_and_its_adjacent_area
      [17] Liu, Q.S., Liu, Q.S., Liu, Y.S., et al., 2008a. Magnetic Study of Mafic Granulite Xenoliths from the Hannuoba Basalt, North China. Geochemistry, Geophysics, Geosystems, 9(6): Q06008. doi: 10.1029/2008GC001952
      [18] Liu, Q.S., Yu, Y., Muxworthy, A.R., et al., 2008b. Effects of Internal Stress on Remanence Intensity Jumps across the Verwey Transition for Multi-Domain Magnetite. Physics of the Earth and Planetary Interiors, 169(1-4): 100-107. doi: 10.1016/j.pepi.2008.07.008
      [19] Liu, Q.S., Liu, Q.S., Yang, T., et al., 2009. Magnetic Study of the UHP Eclogites from the Chinese Continental Scientific Drilling (CCSD) Project. Journal of Geophysical Research, 114: B02106. doi: 10.1029/2008JB005917
      [20] Liu, Q.S., Liu, Q.S., Zhang, Z.M., et al., 2007. Magnetic Properties of Ultrahigh-Pressure Eclogites Controlled by Retrograde Metamorphism: A Case Study from the ZK703 Drillhole in Donghai, Eastern China. Physics of the Earth and Planetary Interiors, 160(3-5): 181-191. doi: 10.1016/j.pepi.2006.10.001
      [21] Liu, Q.S., Zeng, Q.L., Zheng, J.P., et al., 2010. Magnetic Properties of Serpentinized Garnet Peridotites from the CCSD Main Hole in the Sulu Ultrahigh-Pressure Metamorphic Belt, Eastern China. Journal of Geophysical Research, 115(1): B6. doi: 10.1029/2009JB000814
      [22] Liu, X.C., Yang, N., Qu, W., 1999. An Experiment on the Crystallization of Felsic Gneiss from Shuanghe in the Dabie Mountains at 1.0-4.5GPa and Its Geological Implications. Acta Geoscientia Sinica, 20(2): 113-120 (in Chinese with English abstract).
      [23] Meng, X.H., Yu, Q.F., Guo, Y.Z., et al., 2007. A Pilot Study on Paleomagnetism and Rock Magnetism of Maobei Eclogite. Earth Science——Journal of China University of Geosciences, 32(4): 533-539 (in Chinese with English abstract).
      [24] Okay, A.I., Xu, S.T., Sengör, A.M.C., 1989. Coesite from the Dabie Shan Eclogites, Central China. European Journal of Mineralogy, (1): 595-598.
      [25] Oufi, O., Cannat, M., Horen, H., 2002. Magnetic Properties of Variably Serpentinized Abyssal Peridotites. Journal of Geophysical Research, 107(B5): EPM 3-1-EPM 3-19. doi: 10.1029/2001JB000549
      [26] Pan, Y.X., Zhu, R.X., 2005. Rock Magnetism and Magnetic Fabric Studies of the Ultrahigh-Pressure (UHP) Metamorphic Rocks from the Dabie Orogenic Belt, East-Central China: Implications for Retrograde Metamorphism. Acta Petrologica Sinica, 21(4): 1101-1108 (in Chinese with English abstract). http://www.oalib.com/paper/1472278
      [27] Peters, C., Dekkers, M.J., 2003. Selected Room Temperature Magnetic Parameters as a Function of Mineralogy, Concentration and Grain Size. Physics and Chemistry of the Earth, 28(16-19): 659-667. doi: 10.1016/S1474-7065(03)00120-7
      [28] Qi, X.X., Grimmer, J.C., Xu, Z.Q., 2009. Ultrahigh-Pressure Texture Inheritance during Retrogression: Evidence from Magnetofabrics in Eclogites and Ultramafic Rocks (Chinese Continental Scientific Drilling Project). Tectonophysics, 475(2): 267-278. doi: 10.1016/j.tecto.2008.09.015
      [29] Ren, L.D., Niu, B.G., Wu, C.M., et al., 2008. The Retrograde Feature and Magnetite Formation in the Aegirine-Bearing Alkaline Granitic Gneiss in the Dabieshan Mountains. Journal of Mineralogy and Petrology, 28(4): 36-42(in Chinese with English abstract).
      [30] Robinson, P., Harrison, R.J., McEnroe, S.A., et al., 2002. Lamellar Magnetism in the Haematite-Ilmenite Series as an Explanation for Strong Remanent Magnetization. Nature, 418(6897): 517-520. doi: 10.1038/nature00942
      [31] Schmidt, M.W., Thompson, A.B., 1996. Epidote in Calc-Alkaline Magmas: An Experimental Study of Stability, Phase Relationships, and the Role of Epidote in Magmatic Evolution. American Mineralogist, 81: 462-474. doi: 10.2138/am-1996-3-420
      [32] Strada, E., Talarico, F.M., Florindo, F., 2006. Magnetic Petrology of Variably Retrogressed Eclogites and Amphibolites: A Case Study from the Hercynian Basement of Northern Sardinia (Italy). Journal of Geophysical Research, 111(01): B12. doi: 10.1029/2006JB004574
      [33] Wallis, S., Enami, M., Banno, S., 1999. The Sulu UHP Terrane: A Review of the Petrology and Structural Geology. International Geology Review, 41(10): 906-920. doi: 10.1080/00206819909465178
      [34] Wang, Q., Burlini, L., Mainprice, D., et al., 2009. Geochemistry, Petrofabrics and Seismic Properties of Eclogites from the Chinese Continental Scientific Drilling Boreholes in the Sulu UHP Terrane, Eastern China. Tectonophysics, 475(2): 251-266. doi: 10.1016/j.tecto.2008.09.027
      [35] Xu, H.J., Jin, Z.M., Mason, R., et al., 2009. Magnetic Susceptibility of Ultrahigh Pressure Eclogite: The Role of Retrogression. Tectonophysics, 475(2): 279-290. doi: 10.1016/j.tecto.2009.03.020
      [36] Xu, H.J., Jing, Z.M., Ou, X.G., et al., 2004. Effects of Retrogression of Ultrahigh-Pressure Eclogites on Magnetic Susceptibility and Anisotropy. Earth Science——Journal of China University of Geosciences, 29(6): 674-684 (in Chinese with English abstract). http://www.researchgate.net/publication/286206081_Effects_of_retrogression_of_ultrahigh-pressure_eclogites_on_magnetic_susceptibility_and_anisotropy
      [37] Xu, H.J., Jin, Z.M., Ou, X.G., 2006. Lithology Determination of Rocks from CCSD 100-2000m Main Hole by Magnetic Susceptibility and Density Using Discriminant Function Analysis. Earth Science——Journal of China University of Geosciences, 31(4): 513-519 (in Chinese with English abstract).
      [38] Xu, S., Okay, A.I., Ji, S., et al., 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science, 256(5053): 80-82. doi: 10.1126/science.256.5053.80
      [39] Xu, Z.Q., Yang, W.C., Ji, S.C., et al., 2009. Deep Root of a Continent-Continent Collision Belt: Evidence from the Chinese Continental Scientific Drilling (CCSD) Deep Borehole in the Sulu Ultrahigh-Pressure (HP-UHP) Metamorphic Terrane, China. Tectonophysics, 475(2): 204-219. doi: 10.1016/j.tecto.2009.02.029
      [40] Yang, T., Liu, Q.S., Wu, Y., et al., 2006. Characteristics of Magnetic Susceptibility in the Depth of 100-2000m Mainhole of Chinese Continental Scientific Drilling and Its Geological Implications. Acta Petrologica Sinica, 22(7): 2089-2094 (in Chinese with English abstract). http://www.researchgate.net/publication/286323414_Characteristics_of_magnetic_susceptibility_in_the_depth_of_100_2000m_mainhole_of_Chinese_Continental_Scientific_Drilling_and_its_geological_implications/download
      [41] Yang, W.C., Cheng, Z.Y., Chen, G.J., et al., 1999. Geophysical Investigations in Northern Sulu UHPM Belt, Part I: Deep Seismic Reflection. Chinese Journal of Geophysics, 42(1): 41-52 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199904009.htm
      [42] Zhang, R.Y., Liou, J.G., Zheng, Y.F. et al., 2003. Transition of UHP Eclogites to Gneissic Rocks of Low-Grade Amphibolite Facies during Exhumation: Evidence from the Dabie Terrane, Central China. Lithos, 70(3-4): 269-291. doi: 10.1016/S0024-4937(03)00102-6
      [43] Zhang, Z.M., 1996. Disequilibrium Reactions and Kinetics of Ultra-High Pressure Metamorphic Rocks from the Dabie Mountains. Earth Science——Journal of China University of Geosciences, 21(5): 501-507 (in Chinese with English abstract).
      [44] Zhang, Z.M., Xiao, Y.L., Hoefs, J., et al., 2006. Ultrahigh Pressure Metamorphic Rocks from the Chinese Continental Scientific Drilling Project: I. Petrology and Geochemistry of the Main Hole (0-2050m). Contributions to Mineralogy and Petrology, 152: 421-441. doi: 10.1007/s00410-006-0120-5
      [45] Zhang, Z.M., Xu, Z.Q., Liu, F.L., et al., 2002. Composition and Metamorphism of the Root of Southern Sulu Orogen. Geological Bulletin of China, 21(10): 609-616 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgqydz200210003
      [46] Zhang, Z.M., Xu, Z.Q., Liu, F.L., et al., 2004. Geochemistry of Eclogites from the Main Hole (100-2050m) of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 20(1): 27-42 (in Chinese with English abstract).
      [47] 梁凤华, 苏尚国, 游振东, 等, 2005. 中国大陆科学钻探主孔0~2000m榴辉岩的退变质过程. 中国地质, 32(2): 218-229. doi: 10.3969/j.issn.1000-3657.2005.02.005
      [48] 刘福来, 许志琴, 杨经绥, 等, 2004. 中国大陆科学钻探工程主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用标志的识别. 岩石学报, 20(1): 9-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401001.htm
      [49] 刘晓春, 杨农, 曲玮, 1999. 大别山双河长英质片麻岩在1.0~4.5GPa下的结晶实验及其地质意义. 地球学报, 20(2): 113-120. doi: 10.3321/j.issn:1006-3021.1999.02.001
      [50] 孟小红, 余钦范, 郭友钊, 等, 2007. 毛北榴辉岩古地磁及岩石磁学初探. 地球科学——中国地质大学学报, 32(4): 533-539. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200704016.htm
      [51] 潘永信, 朱日祥, 2005. 大别山超高压变质岩带的岩石磁学和磁组构研究及其地质意义. 岩石学报, 21(4): 1101-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504007.htm
      [52] 任留东, 牛宝贵, 吴春明, 等, 2008. 大别山霓辉花岗片麻岩中磁铁矿的形成. 矿物岩石, 28(4): 36-42. doi: 10.3969/j.issn.1001-6872.2008.04.007
      [53] 徐海军, 金振民, 欧新功, 等, 2004. 超高压榴辉岩退变质作用对岩石磁化率的影响. 地球科学——中国地质大学学报, 29(6): 674-684. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406005.htm
      [54] 徐海军, 金振民, 欧新功, 2006. 磁化率和密度对中国大陆科学钻探主孔100~2000m岩石类型的判别. 地球科学——中国地质大学学报, 31(4): 513-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604007.htm
      [55] 杨涛, 刘庆生, 吴耀, 等, 2006. 中国大陆科学钻探(CCSD)主孔100~2000m区间磁化率的变异特征及其地质意义. 岩石学报, 22(7): 2089-2094. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607036.htm
      [56] 杨文采, 程振炎, 陈国九, 等, 1999. 苏鲁超高压变质带北部地球物理调查(I): 深反射地震. 地球物理学报, 42(1): 41-52. doi: 10.3321/j.issn:0001-5733.1999.01.005
      [57] 张泽明, 1996. 大别山地区超高压变质岩的不平衡退变质反应及动力学. 地球科学——中国地质大学学报, 21(5): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX605.009.htm
      [58] 张泽明, 许志琴, 刘福来, 等, 2002. 南苏鲁造山带根部的物质组成及变质作用. 地质通报, 21(10): 609-616. doi: 10.3969/j.issn.1671-2552.2002.10.003
      [59] 张泽明, 许志琴, 刘福来, 等, 2004. 中国大陆科学钻探工程主孔(100~2050m)榴辉岩岩石化学研究. 岩石学报, 20(1): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401002.htm
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  3072
    • HTML全文浏览量:  168
    • PDF下载量:  538
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-01-03
    • 刊出日期:  2014-12-01

    目录

      /

      返回文章
      返回