• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    三峡库区上地壳横波速度结构

    李小勇 朱培民 周强 彭松柏 刘江平 刘娇

    李小勇, 朱培民, 周强, 彭松柏, 刘江平, 刘娇, 2014. 三峡库区上地壳横波速度结构. 地球科学, 39(12): 1842-1850. doi: 10.3799/dqkx.2014.167
    引用本文: 李小勇, 朱培民, 周强, 彭松柏, 刘江平, 刘娇, 2014. 三峡库区上地壳横波速度结构. 地球科学, 39(12): 1842-1850. doi: 10.3799/dqkx.2014.167
    Li Xiaoyong, Zhu Peimin, Zhou Qiang, Peng Songbai, Liu Jiangping, Liu Jiao, 2014. S-Wave Velocity Structure of Upper Crust in Three Gorges Reservoir Region of the Yangtze River. Earth Science, 39(12): 1842-1850. doi: 10.3799/dqkx.2014.167
    Citation: Li Xiaoyong, Zhu Peimin, Zhou Qiang, Peng Songbai, Liu Jiangping, Liu Jiao, 2014. S-Wave Velocity Structure of Upper Crust in Three Gorges Reservoir Region of the Yangtze River. Earth Science, 39(12): 1842-1850. doi: 10.3799/dqkx.2014.167

    三峡库区上地壳横波速度结构

    doi: 10.3799/dqkx.2014.167
    基金项目: 

    国家自然科学基金 91014002

    国家自然科学基金 41174049

    详细信息
      作者简介:

      李小勇(1987-), 男, 博士在读, 主要从事地震数据处理解释、层析成像、地质构造方面的研究.E-mail: lixiaoyong20111@hotmail.com

    • 中图分类号: P315.2

    S-Wave Velocity Structure of Upper Crust in Three Gorges Reservoir Region of the Yangtze River

    • 摘要: 为了更好地了解三峡库区的稳定性, 利用三峡库区的流动宽频地震仪台阵于2011年4~5月期间观测的背景噪声数据, 采用互相关方法提取了瑞利面波的格林函数, 用多重滤波方法获得了瑞利面波的群速度频散曲线.利用走时层析成像方法获得了0.5~10.0 s周期的纯路径频散曲线, 进而反演获得了沿巴东-茅坪-土门方向的横波速度结构剖面, 揭示了三峡地区上地壳的速度变化情况.研究表明: (1)研究区地下速度结构与地质构造关系密切, 速度剖面上很好地反映了一个以黄陵背斜核部为中心的背斜构造; (2)九畹溪及其周边区域下方较快的速度变化可能与对应的区域断裂构造、地震活动性密切相关; (3)三斗坪地区上地壳表现为高速, 表明三峡坝区处于构造稳定区域.

       

    • 图  1  三峡地区地质构造和地震台站分布(据李强等,2011修改)

      ①雾渡河断裂;②新华断裂;③兴山-马良平断裂;④九畹溪断裂;⑤仙女山断裂;⑥高桥断裂;⑦牛口断裂;⑧水田坝断裂;⑨远安断裂带;⑩建始断裂;B11天阳坪断裂;Ⅰ.神农架地块;Ⅱ.秭归盆地;Ⅲ.黄陵背斜;1.第四系;2.白垩系-第三系;3.侏罗系;4.三叠系-震旦系;5.前震旦系;6.断裂;7.河流;8.宽频地震台站,台站旁边标注了台站编号(表 1);9~12为三峡大坝蓄水前两年半(2001年1月到2003年6月)震级分别为Ms0~0.9、1.0~1.9、2.0~2.0和大于3.0的地震震中位置.图中黑色实线为图 7中横波速度剖面所在位置.红色实心圆圈为秭归2014年3月27日Ms4.3级和3月30日Ms4.7地震震中的位置

      Fig.  1.  Three Gorges Region and distribution of broadband seismic stations

      图  2  部分台站地震记录垂向分量的互相关结果

      图中对纵坐标对应的互相关结果进行了归一化处理,图的右上角标注了进行互相关的台站对及相应的台站间距

      Fig.  2.  An example of cross-correlation record

      图  3  利用多重滤波方法进行瑞利面波群速度频散曲线提取

      a.台站9和台站3的互相关波形记录,站台9和站台3,距离=69.46 km,时间=27 d,信噪比=16.39;b.群速度频散时频图,蓝线代表提取的频散曲线

      Fig.  3.  An example of dispersion measurement using multiple filter method

      图  4  不同周期的分辨率测试结果(a~d)及层析成像走时残差(e~h)

      图a~图f中“△”为宽频地震台站,黑色实线为射线路径

      Fig.  4.  Resolution results (a~d) and travel time misfits (e~h) maps at different periods

      图  5  1 s、3 s、6 s、10 s周期的群速度

      图中“▽”代表台站,黑色粗线为图 7中横波速度剖面所在位置

      Fig.  5.  Group velocity maps at periods of 1(a), 3(b), 6(c) and 10(d) seconds

      图  6  三峡地区纯路径频散曲线的一维速度结构反演

      a.实测频散曲线和反演频散曲线拟合情况;b.反演获得的横波速度结构

      Fig.  6.  One dimensional velocity structure inversion of the pure path dispersion curves in Three Gorges Region

      图  7  巴东-茅坪-土门一线横波速度结构剖面

      右边色柱标志横波速度.“▽”为研究所使用宽频地震台站在剖面上的投影,上方标注了台站的位置.白色虚线为低速区的底界面.“ ●”为秭归2014年3月27日Ms4.3和3月30日Ms4.7地震震中的位置

      Fig.  7.  The S-wave velocity profile along Badong, Maoping and Tumen

      表  1  宽频地震仪布置情况

      Table  1.   Location of broadband seismographs

      台站编号 仪器编号 坐标经纬度 高程(m) 观测时间(年月日) 台站位置
      1 219 110.44°E,31.02°N 414 20110422—20110519 巴东
      2 214 110.55°E,31.01°N 276 20110422—20110517 秭归台子湾
      3 216 110.60°E,30.95°N 172 20110422—20110520 秭归马家坝
      4 224 110.74°E,30.94°N 159 20110421—20110513 郭家坝
      5 223 110.83°E,30.88°N 378 20110421—20110520 九畹溪
      6 218 110.93°E,30.85°N 411 20110421—20110521 茅坪
      7 227 111.08°E,30.85°N 120 20110424—20110521 三斗坪
      8 222 111.20°E,30.84°N 599 20110424—20110522 兆吉坪
      9 226 111.30°E,30.73°N 120 20110420—20110521 葛洲坝
      10 213 111.43°E,30.68°N 69 20110420—20110518 土门
      下载: 导出CSV
    • [1] Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., et al., 2007. Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x
      [2] Chen, B.Y., Gao, W.H., 1986. A Preliminary Investigation for Crustal Velocity-Layer Structure Using Explosion Seismic Profile from the Jiajiawan to the Shayuan, Hubei. Crustal Deformation and Earthquake, 6(1): 65-74(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB198601011.htm
      [3] Chen, X.B., 1994. Characteristics of Deep Structure of Three Gorges and Its Adjacent Area. Seismological Press, Beijing, 50-63 (in Chinese).
      [4] Fang, L.H., Wu, J.P., Lü, Z.Y., 2009. Rayleigh Wave Group Velocity Tomography from Ambient Seismic Noise in North China. Chinese Journal of Geophysics, 52(3): 663-671 (in Chinese with English abstract). doi: 10.1002/cjg2.1388
      [5] Gardner, G.H., Gardner, L.W., Greory, A.R., 1974. Formation Velocity and Density: The Diagnostic Basics for Stratigraphic Traps. Geophysics, 39(6): 770-780. doi: 10.1190/1.1440465
      [6] Kennett, B.L.N., Sambridge, M.S., Williamson, P.R., 1988. Subspace Methods for Large Inverse Problems with Multiple Parameter Classes. Geophysics, 94(2): 237-247. doi: 10.1111/j.1365-246X.1988.tb05898.x
      [7] Li, H.Y., Bernardi, F., Michelini, A., 2010. Surface Wave Dispersion Measurements from Ambient Seismic Noise Analysis in Italy. Geophysical Journal International, 180(3): 1242-1252. doi: 10.1111/j.1365-246X.2009.04476.x
      [8] Li, Q., Zhao, X., Cai, J.A., et al., 2009. P-wave Velocity Structure of Upper and Middle Crust beneath the Three Gorges Reservoir Dam and Adjacent Region. Science in China (Ser. D), 39(4): 427-436 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed200904015
      [9] Li, Q., Zhao, X., Cai, J.A., et al., 2011. S-Wave Velocity Structure of Upper and Middle Crust beneath the Three Gorges Reservoir Dam and Adjacent Region. Acta Seismologica Sinica, 33(1): 39-50 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201101005.htm
      [10] Li, T.L., 1991. Evaluation of the Regional Crust Stability in the Three Gorge Areas of the Yangtze River. Journal of Xi'an College of Geology, 13(3): 48-58 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX199103007.htm
      [11] Liao, W., L., Yao, Y.S., Ding, Z.F., et al., 2007. Tomographic Imagery of P Wave Velocity Structure in Three Gorges Region. Journal of Geodesy and Geodynamics, 27(3): 80-84(in Chinese with English abstract). http://www.oalib.com/paper/1552823
      [12] Lin, F.Q., Ritzwoller, M.H., Townend. J., et al., 2007. Ambient Noise Rayleigh Wave Tomography of New Zealand. Geophysical Journal International, 170(2): 649-666. doi: 10.1111/j.1246X.2007.03414.x
      [13] Liu, C.Z., Tan, Z.D., 1989. Study on Earthquake Induced Environment and Engineering Geology in Three Gorges Region. Earthquake Proceedings on Three Gorges Project. Science Press, Beijing, 427-442 (in Chinese).
      [14] Liu, S.F., Liu, S.W., Jia, M.Y., et al., 1984. The Deep Gravitational Field and Its Geological Explanation over Hubei Province and Vicinal Regions. Crustal Deformation and Earthquake, 4(4): 357-364(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB198404006.htm
      [15] Ma, Z.J., 1964. Mechanics Analysis of Mesozoic Geological Structure in the West of Hubei Province. Scientia Geological Sinica, (1): 76-90(in Chinese).
      [16] Mei, B., Xu, Y., Zhang, Y., 2013. P- and S-Velocity Structure beneath the Three Gorges Region(Central China) from Local Earthquake Tomography. Geophysical Journal International, 193(2): 1035-1049. doi: 10.1093/gji/ggt047
      [17] Peng, S.B., Li, C.N., Kusky, T.M., et al., 2010. Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline, Western Hubei, China. Geological Bulletin of China, 29(1): 8-20 (in Chinese with English abstract). http://www.researchgate.net/publication/287557049_Discovery_and_its_tectonic_significance_of_the_Proterozoic_Miaowan_ophiolites_in_the_southern_Huangling_anticline_western_Hubei_China
      [18] Rawlinson, N., Sambridge, M., 2005. The Fast Marching Method: An Effective Tool for Tomographic Imaging and Tracking Multiple Phases in Complex Layered Media. Exploration Geophysics, 36(4): 341-350. doi: 10.1071/EG05341
      [19] Tan, Z.D., Bo, J.S., 1991. Assessment of Crustal Stability and Predictions of Reservoir-Induced Earthquake in Reservoir Head Region of Three Gorges Project on Yangtze River. Geological Publishing House, Beijing, 10-21(in Chinese).
      [20] Wang, S.R., Zhu, S.L., Li, R.C., 1992. Three Dimensional Inversion of Gravity Anomalies in the Region of Three Gorges, the Yangtze River. Acta Geophysica Sinica, 35(1): 69-76(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX199201009.htm
      [21] Xia, H.K., Lu, Z.X., Niu, X., et al., 1992. The Seismic (Active) Area's Deep and Shallow Tectonic, Composition and Its Relationship with Earthquakes in Chaoyang-Yixian. Acta Seismologica Sinica, 14(2): 180-186 (in Chinese). doi: 10.1007/BF02651024/metrics
      [22] Xia, J.H., Miller, R.D., Park, C.B., 1999. Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Wave. Geophysics, 64(3): 691-700. doi: 10.1190/1.1444578
      [23] Yan, Z.G., Xue, J.R., 1988. Study of Regional Crust Structure by Imaginary Wave Velocity in Three Gorges Regiona of Yangtze River. South China Seismological Journal, 8(3): 1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDI198803000.htm
      [24] Yang, Y.J., Ritzwoller, M.H., Levshin, A.L., 2007. Ambient Noise Rayleigh Wave Tomography across Europe. Geophysical Journal International, 168(1): 259-274. doi: 10.1111/j.1365-246X.2006.03203.x
      [25] Yuan, D.W., Mei, Y.T., Qin, X.L., et al., 1996. Crustal Stability Study in and around the Dam Region of Three Gorges Project. China University of Geosciences Press, Wuhan, 11-17(in Chinese).
      [26] Zhang, Z.J., Bai, Z.M., Walter, M., et al., 2009. Crustal Structure across the Three Gorges Area of Yangtze Platform, Central, from Seismic Refraction/Wide-Angle Reflection Data. Tectonophysics, 475(3-4): 423-437. doi: 10.1016/j.tecto.2009.05.022
      [27] Zhang, Y., Chen, C., Liang, Q., et al., 2012. Density Structure of Upper and Middle Crust in Three Gorges Reservoir Area. Earth Science—Journal of China University of Geosciences, 37(Suppl. ): 213-222 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2012S1024.htm
      [28] Zhang, Z.F., 1996. Crust Deformation Monitoring and Analysis of Crust Stability in the Yangtze Gorges Area. Crustal Deformation and Earthquake, 16(4): 48-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB604.008.htm
      [29] Zhou, Q.Y., He, Y.F., Jin, P., et al., 2006. Using MFT Obtain Rayleigh-Wave Dispersion Curve. Northwestern Seismological Journal, 28(1): 46-50 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZBDZ200601009.htm
      [30] Zhu, J.S., 1988. The Calculation Method in Seismology. Seismological Press, Beijing, 473-476(in Chinese).
      [31] 陈步云, 高文海, 1986. 贾家湾-沙园剖面地壳结构的初步研究. 地壳形变与地震, 6(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB198601011.htm
      [32] 陈学波, 1994. 长江三峡工程坝区及外围深部构造特征研究. 北京: 地震出版社, 50-63.
      [33] 房立华, 吴建平, 吕作勇, 2009. 华北地区基于噪声的瑞利面波群速度层析成像. 地球物理学报, 52(3): 663-671. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200903010.htm
      [34] 李强, 赵旭, 蔡晋安, 等, 2009. 三峡水库坝址及邻区中上地壳P波速度结构. 中国科学, 39(4): 427-436. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200904005.htm
      [35] 李强, 赵旭, 蔡晋安, 等, 2011. 三峡水库坝址及邻区中上地壳S波速度结构. 地震学报, 33(1): 39-50. doi: 10.3969/j.issn.0253-3782.2011.01.004
      [36] 李同录, 1991. 长江三峡地区区域地壳稳定性评价. 西安地质学院学报, 13(3): 48-58. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX199103007.htm
      [37] 廖武林, 姚运生, 丁志峰, 等, 2007. 三峡地区P波速度层析成像研究. 大地测量与地球动力学, 27(3): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200703018.htm
      [38] 刘传正, 谭周地, 1989. 长江三峡库首区诱发地震的环境工程地质研究. 长江三峡工程地震专题论文集. 北京: 科学出版社, 427-442.
      [39] 刘绍府, 刘锁旺, 贾民育, 1984. 湖北和邻区深部重力场及其地质解释. 地壳变形与地震, 4(4): 357-364. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB198404006.htm
      [40] 马宗晋, 1964. 鄂西中生代地质构造的力学分析. 地质科学, (1): 76-90.
      [41] 彭松柏, 李昌年, Kusky, T.M., 等, 2010. 鄂西黄陵背斜南部元古宙庙湾蛇绿岩的发现及其构造意义. 地质通报, 29(1): 8-20. doi: 10.3969/j.issn.1671-2552.2010.01.002
      [42] 谭周地, 薄景山, 1991. 长江三峡工程库首区地壳稳定性评价与水库诱发地震预测. 北京: 地质出版社, 10-21.
      [43] 王石任, 朱思林, 李蓉川, 1992. 长江三峡地区三维重力反演研究. 地球物理学报, 35(1): 69-76. doi: 10.3321/j.issn:0001-5733.1992.01.009
      [44] 夏怀宽, 卢造勋, 刘雪等, 1992. 朝阳—义县地震区的深浅部构造、组成及其与地震的关系. 地震学报, 14(2): 180-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199202007.htm
      [45] 严尊国, 薛军蓉, 1988. 利用虚波速度研究长江三峡地区地壳结构. 华南地震, 8(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI198803000.htm
      [46] 袁登维, 梅应堂, 秦兴黎, 等, 1996. 长江三峡工程坝区及外围地壳稳定性研究. 武汉: 中国地质大学出版社, 11-17.
      [47] 张毅, 陈超, 梁青, 等, 2012. 三峡地区中上地壳密度结构. 地球科学—中国地质大学学报, 37(增刊1): 213-222. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S1024.htm
      [48] 张众服, 1996. 三峡地区地形变监测与区域地壳稳定性分析. 地壳形变与地震, 16(4): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB604.008.htm
      [49] 周青云, 何永峰, 靳平, 等, 2006. 利用多重滤波方法提取面波频散曲线. 西北地震学报, 28(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200601009.htm
      [50] 朱介寿, 1988. 地震学中的计算方法. 北京: 地震出版社, 473-476.
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  3159
    • HTML全文浏览量:  134
    • PDF下载量:  436
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-04-05
    • 刊出日期:  2014-12-01

    目录

      /

      返回文章
      返回