• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于广域次声传感器网络的地震本地次声波监测

    郭泉 杨亦春 吕君 滕鹏晓

    郭泉, 杨亦春, 吕君, 滕鹏晓, 2014. 基于广域次声传感器网络的地震本地次声波监测. 地球科学, 39(12): 1807-1817. doi: 10.3799/dqkx.2014.164
    引用本文: 郭泉, 杨亦春, 吕君, 滕鹏晓, 2014. 基于广域次声传感器网络的地震本地次声波监测. 地球科学, 39(12): 1807-1817. doi: 10.3799/dqkx.2014.164
    Guo Quan, Yang Yichun, Lü Jun, Teng Pengxiao, 2014. Observation of Local Infrasound Coupled by Seismic Wave on Wide Spread Infrasound Network. Earth Science, 39(12): 1807-1817. doi: 10.3799/dqkx.2014.164
    Citation: Guo Quan, Yang Yichun, Lü Jun, Teng Pengxiao, 2014. Observation of Local Infrasound Coupled by Seismic Wave on Wide Spread Infrasound Network. Earth Science, 39(12): 1807-1817. doi: 10.3799/dqkx.2014.164

    基于广域次声传感器网络的地震本地次声波监测

    doi: 10.3799/dqkx.2014.164
    基金项目: 

    国家自然科学基金面上项目 11074278

    国家自然科学基金面上项目 11174320

    详细信息
      作者简介:

      郭泉(1984-), 男, 博士在读, 主要从事自然事件次声波监测及大气传播研究.E-mail: guoquan@mail.ioa.ac.cn

    • 中图分类号: P315.61

    Observation of Local Infrasound Coupled by Seismic Wave on Wide Spread Infrasound Network

    • 摘要: 通过提出应用于广域次声传感器阵列的最小方差法信号源定位模型, 分析了阵列信号相关系数特征和本地次声波实时大气传播特性, 对阵列阵元数量、阵元组成结构引起的定位误差以及本地次声波的真实大气传播射线进行仿真, 并利用中国境内布置的广域次声传感器网络监测到了2013年4月20日四川芦山(雅安)地震的瑞利波激发的本地次声波, 验证了上述模型和仿真, 结合中国地震台网的国内的地震监测台站数据, 从信号走时、信号互相关系数、小波时频图、质点运动轨迹等方面进行了分析与对比, 并使用广域最小方差法搜索的算法对次声波和地震波进行定位, 结果显示: 各次声站点接收到由地震瑞利波引起次声站附近地表震动产生并垂直地表向上传播的次声波, 在地震瑞利波之后到达, 而且相关系数都达到0.6~0.9, 计算得到次声波源方位角为230°(以北京为原点), 距离震中小于150 km, 而且本地次声波受大气传播影响较小, 能够较容易的被广域次声阵列探测到, 因此地震本地次声波监测能够作为地震监测、研究地面起伏运动与大气波动关系的有效手段.

       

    • 图  1  阵元数量对最小方差法方位角估计精度影响

      Fig.  1.  Accuracy of azimuth estimation affected by number of array spot

      图  2  次声阵列分布对方位角估计产生的归一化误差

      Fig.  2.  Normalized error of azimuth error caused by distribution of infrasound array

      图  3  枝江(a, b)与北京(c, d)本地次声波大气传播剖面

      声线仰角为-90°~+90°,仰角变化间隔为2°,azi为方位角,蓝色为从平流层顶逸出的声线,红色代表能够反射回地面的声线

      Fig.  3.  Atmosphere propagation profile of local infrasound in Zhijiang (a, b) and Beijing (c, d)

      图  4  芦山地震国内地震台站垂直分量监测信息(起始时间2013-04-20T08∶02∶00 UTC+8,发震时间为信号开始后的46 s)

      Fig.  4.  Vertical-component of Lushan earthquake monitored by seismic station

      图  5  芦山地震各次声站本地次声波波形(起始时间2013-04-20T08∶02∶00 UTC+8,发震时间为信号开始后的46 s)

      Fig.  5.  Local infrasound waveform monitored by infrasound stations

      图  6  北京次声台站三点阵次声相关系数(a)和闭合时延和与各阵元时延量(b)

      Fig.  6.  Correlation coefficient of Beijing tripartite infrasound array (a) and consistence of time-delay between each element of array (b)

      图  7  芦山地震(恩施ENH)垂直分量信号峰值时刻起始50 s内的质点运动轨迹

      Fig.  7.  Particle motion trajectory analysis (ENH) of 100 s from the time of peak amplitude in Lushan earthquake

      图  10  最小方差法计算地震源与次声波源

      Fig.  10.  Location of seismic source and infrasound source calculated by least-squared-error method

      图  8  次声与地震台站信号小波分析结果

      a.北京地震台站;b.北京次声台站.起始时间2013-04-20T08∶02∶00 UTC+8,发震时间为信号开始后的46 s

      Fig.  8.  Wavelet analysis of infrasound and seismic signal of Beijing seismic infrasound

      图  9  芦山地震后北京地震台站(BJT)与北京次声台站信号互相关分析

      Fig.  9.  Cross-correlation of signals between infrasound and seismic station (BJT) of Beijing

      表  1  各地震台站地震走时

      Table  1.   Seismic travel time of each station

      站点 走时(s) 震中距离(km) 速度(km/s) 地理坐标
      KMI(昆明) 184 539 2.93 25.12°N, 102.74°E
      ENH(恩施) 220 625 2.84 30.28°N, 109.49°E
      XAN(西安) 234 717 3.06 34.03°N, 108.92°E
      LSA(拉萨) 384 1 142 2.97 29.70°N, 91.13°E
      QIZ(琼中) 484 1 398 2.89 19.03°N, 109.84°E
      TIA(泰安) 505 1 485 2.94 36.21°N, 117.12°E
      BJT(北京) 543 1 635 3.01 40.02°N, 116.17°E
      SSE(上海) 614 1 744 2.84 31.09°N, 121.19°E
      WMQ(乌鲁木齐) 664 2 044 3.07 43.81°N, 87.70°E
      HIA(海拉尔) 844 2 566 3.04 49.27°N, 119.74°E
      MDJ(牡丹江) 1 084 2 838 2.62 44.62°N, 129.59°E
      下载: 导出CSV

      表  2  本地次声波信号走时

      Table  2.   Local infrasound travel time

      站点 信号传播时间(s) 与震中距离(km) 估计速度(km/s)
      北京 565 1 635 2.89
      济南 470 1 400 2.97
      襄阳 310 910 2.92
      枝江 280 821 2.93
      下载: 导出CSV
    • [1] Christie, D.R., Campus, P., 2009. The IMS Infrasound Network: Design and Establishment of Infrasound Stations. In: Le Pichon, A., Blanc, E., Hauchecorne, A., eds., Infrasound Monitoring for Atmospheric Studies. Springer, Berlin, 29-75.
      [2] Cui, D.Y., He, Y.S., 2003. Attempt on Applying Azimuth of Multi-Station to Calculate the Earthquake Center. Seismological Research of Northeast China, 19(4): 30-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DDYJ200304005.htm
      [3] Donn, W.L., Posmentier, E.S., 1964. Ground-Coupled Air Waves from the Great Alaskan Earthquake. Journal of Geophysical Research, 69(24): 5357-5361. doi: 10.1029/JZ069i024p05357
      [4] Drob, D.P., Meier, R.R., et al., 2009. Inversion of Infrasound Signals for Passive Atmospheric Remote Sensing. In: Le Pichon, A., Blanc, E., Hauchecorne, A., eds., Infrasound Monitoring for Atmospheric Studies. Springer, Berlin, 701-731.
      [5] Hobiger, M., Cornou, C., et al., 2013. Ground Structure Imaging by Inversions of Rayleigh Wave Ellipticity: Sensitivity Analysis and Application to European Strong-Motion Sites. Geophysical Journal International, 192(1): 207-229. doi: 10.1093/gji/ggs005
      [6] Kong, X.L., Li, L.M., Luo, S.X., et al., 2008. Seismic Wave Ray Forward in Anisotropy Medium. Computing Techniques for Geophysical and Geochemical Exploration, 30(3): 178-184 (in Chinese with English abstract). http://www.researchgate.net/publication/292920022_Seismic_wave_ray_forward_in_anisotropy_medium
      [7] Le Pichon, A., Guilbert, J., Vallée, M., et al., 2003. Infrasonic Imaging of the Kunlun Mountains for the Great 2001 China Earthquake. Geophysical Research Letters, 30(15). doi: 10.1029/2003GL017581
      [8] Le Pichon, A., Guilbert, J., Vega, A., et al., 2002. Ground-Coupled Air Waves and Diffracted Infrasound from the Arequipa Earthquake of June 23, 2001. Geophysical Research Letters, 29(18): 33-1-33-4. doi: 10.1029/2002GL015052
      [9] Lin, L., Yang, Y.C., 2010. Observation & Study of a Kind of Low-Frequency Atmospheric Infrasonic Waves. Acta Acustica. , 35(2): 200-207 (in Chinese with English abstract).
      [10] Lü, J., Guo, Q., Feng, H.N., et al., 2012. Anomalous Infrasonic Waves before a Small Earthquake in Beijing. Chinese J. Geophys. , 55(10) : 3379-3385 (in Chinese with English abstract). doi: 10.1002/cjg2.1751/full
      [11] Mack, H., Flinn, E.A., 1971. Analysis of the Spatial Coherence of Short-Period Acoustic-Gravity Waves in the Atmosphere. Geophysical Journal of the Royal Astronomical Society, 26(1-4): 255-269. doi: 10.1111/j.1365-246X.1971.tb03399.x
      [12] Mikumo, T., Watada, S., 2009. Acoustic-Gravity Waves from Earthquake Sources. In: Le Pichon, A., Blanc, E., Hauchecorne, A., eds., Infrasound Monitoring for Atmospheric Studies. Springer, Berlin, 263-279.
      [13] Olson, J.V., Wilson, C.R., Hansen, R.A., 2003. Infrasound Associated with the 2002 Denali Fault Earthquake, Alaska. Geophysical Research Letters, 30(23). doi: 10.1029/2003GL018568
      [14] Poggi, V., Fäh, D., 2010. Estimating Rayleigh Wave Particle Motion from Three-Component Array Analysis of Ambient Vibrations. Geophysical Journal International, 180(1): 251-267. doi: 10.1111/j.1365-246X.2009.04402.x
      [15] Shao, C.J., Tang, L., Li, X.F., 2005. Characteristics of Infrasonic Waves Caused by the Ms8.0 Earthquake in 2003 in Hokkaido, Japan. Earthquake, 25(1): 74-80 (in Chinese with English abstract). http://www.researchgate.net/publication/289896019_Characteristics_of_infrasonic_waves_caused_by_the_Ms80_earthquake_in_2003_in_Hokkaido_Japan
      [16] Watada, S., Kunugi, T., Hirata, K., et al., 2006. Atmospheric Pressure Change Associated with the 2003 Tokachi-Oki Earthquake. Geophysical Research Letters, 33(24). doi: 10.1029/2006GL027967
      [17] Xie, J.L., Tao, Z.D., Xie, Z.H., 2003. A High Sensitivity Wide-Band Infrasound Condenser Microphone. Nuclear Electronics & Detection Technology, 23(5): 428-432 (in Chinese with English abstract). http://www.researchgate.net/publication/292668839_High_sensitivity_wide-band_infrasound_condenser_microphone
      [18] 崔东源, 和跃时, 2003. 利用多台方位角计算震中的尝试. 东北地震研究, 19(4): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ200304005.htm
      [19] 孔选林, 李录明, 罗省贤, 2008. 各向异性介质中的地震波射线正演. 物探化探计算技术, 30(3): 178-184. doi: 10.3969/j.issn.1001-1749.2008.03.003
      [20] 林琳, 杨亦春, 2010. 大气中一种低频次声波观测研究. 声学学报, 35(2): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201002017.htm
      [21] 吕君, 郭泉, 冯浩楠, 等, 2012. 北京地震前的异常次声波. 地球物理学报, 55(10): 3379-3385. doi: 10.6038/j.issn.0001-5733.2012.10.020
      [22] 邵长金, 唐炼, 李相方, 2005.2003年日本北海道8.0级地震次声波特征研究. 地震, 25(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200501010.htm
      [23] 谢金来, 陶中达, 谢照华, 2003. 高灵敏度宽频带电容次声传感器. 核电子学与探测技术, 23(5): 428-432. doi: 10.3969/j.issn.0258-0934.2003.05.011
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  3487
    • HTML全文浏览量:  143
    • PDF下载量:  510
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-12-31
    • 刊出日期:  2014-12-01

    目录

      /

      返回文章
      返回