Observation of Local Infrasound Coupled by Seismic Wave on Wide Spread Infrasound Network
-
摘要: 通过提出应用于广域次声传感器阵列的最小方差法信号源定位模型, 分析了阵列信号相关系数特征和本地次声波实时大气传播特性, 对阵列阵元数量、阵元组成结构引起的定位误差以及本地次声波的真实大气传播射线进行仿真, 并利用中国境内布置的广域次声传感器网络监测到了2013年4月20日四川芦山(雅安)地震的瑞利波激发的本地次声波, 验证了上述模型和仿真, 结合中国地震台网的国内的地震监测台站数据, 从信号走时、信号互相关系数、小波时频图、质点运动轨迹等方面进行了分析与对比, 并使用广域最小方差法搜索的算法对次声波和地震波进行定位, 结果显示: 各次声站点接收到由地震瑞利波引起次声站附近地表震动产生并垂直地表向上传播的次声波, 在地震瑞利波之后到达, 而且相关系数都达到0.6~0.9, 计算得到次声波源方位角为230°(以北京为原点), 距离震中小于150 km, 而且本地次声波受大气传播影响较小, 能够较容易的被广域次声阵列探测到, 因此地震本地次声波监测能够作为地震监测、研究地面起伏运动与大气波动关系的有效手段.Abstract: A kind of least-square-error localization algorithm applied on wide spread infrasound network is proposed in this article. Models of cross correlation between distant sensors and atmosphere infrasound propagation are analyzed. The localization error caused by quantity and distribution structure of network and ray tracing of local infrasound in real atmosphere are also calculated. Infrasound coupled by local seismic Rayleigh wave of Lushan (Ya'an) earthquake on April 20th, 2013 is detected by infrasound network and could prove the algorithm and analysis above. Comparing infrasound signals with seismic recording of IRIS global network, we find that they ware well correlated for the corresponding time period in signal travel time, signal correlation (0.6-0.9), particle motion trajectory analysis, etc.. The zone of infrasound source calculated by the least-square-error localizing algorithm is not compact but its center (minimum value determined by least-square-error method) is less than 150 km distant from the epicenter. Due to the less absorption and refraction in atmosphere propagation, local infrasound is easily detected and recognized and could be a possible and feasible way to monitor earthquake and relationship between ground motion and pressure perturbation in atmosphere.
-
表 1 各地震台站地震走时
Table 1. Seismic travel time of each station
站点 走时(s) 震中距离(km) 速度(km/s) 地理坐标 KMI(昆明) 184 539 2.93 25.12°N, 102.74°E ENH(恩施) 220 625 2.84 30.28°N, 109.49°E XAN(西安) 234 717 3.06 34.03°N, 108.92°E LSA(拉萨) 384 1 142 2.97 29.70°N, 91.13°E QIZ(琼中) 484 1 398 2.89 19.03°N, 109.84°E TIA(泰安) 505 1 485 2.94 36.21°N, 117.12°E BJT(北京) 543 1 635 3.01 40.02°N, 116.17°E SSE(上海) 614 1 744 2.84 31.09°N, 121.19°E WMQ(乌鲁木齐) 664 2 044 3.07 43.81°N, 87.70°E HIA(海拉尔) 844 2 566 3.04 49.27°N, 119.74°E MDJ(牡丹江) 1 084 2 838 2.62 44.62°N, 129.59°E 表 2 本地次声波信号走时
Table 2. Local infrasound travel time
站点 信号传播时间(s) 与震中距离(km) 估计速度(km/s) 北京 565 1 635 2.89 济南 470 1 400 2.97 襄阳 310 910 2.92 枝江 280 821 2.93 -
[1] Christie, D.R., Campus, P., 2009. The IMS Infrasound Network: Design and Establishment of Infrasound Stations. In: Le Pichon, A., Blanc, E., Hauchecorne, A., eds., Infrasound Monitoring for Atmospheric Studies. Springer, Berlin, 29-75. [2] Cui, D.Y., He, Y.S., 2003. Attempt on Applying Azimuth of Multi-Station to Calculate the Earthquake Center. Seismological Research of Northeast China, 19(4): 30-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DDYJ200304005.htm [3] Donn, W.L., Posmentier, E.S., 1964. Ground-Coupled Air Waves from the Great Alaskan Earthquake. Journal of Geophysical Research, 69(24): 5357-5361. doi: 10.1029/JZ069i024p05357 [4] Drob, D.P., Meier, R.R., et al., 2009. Inversion of Infrasound Signals for Passive Atmospheric Remote Sensing. In: Le Pichon, A., Blanc, E., Hauchecorne, A., eds., Infrasound Monitoring for Atmospheric Studies. Springer, Berlin, 701-731. [5] Hobiger, M., Cornou, C., et al., 2013. Ground Structure Imaging by Inversions of Rayleigh Wave Ellipticity: Sensitivity Analysis and Application to European Strong-Motion Sites. Geophysical Journal International, 192(1): 207-229. doi: 10.1093/gji/ggs005 [6] Kong, X.L., Li, L.M., Luo, S.X., et al., 2008. Seismic Wave Ray Forward in Anisotropy Medium. Computing Techniques for Geophysical and Geochemical Exploration, 30(3): 178-184 (in Chinese with English abstract). http://www.researchgate.net/publication/292920022_Seismic_wave_ray_forward_in_anisotropy_medium [7] Le Pichon, A., Guilbert, J., Vallée, M., et al., 2003. Infrasonic Imaging of the Kunlun Mountains for the Great 2001 China Earthquake. Geophysical Research Letters, 30(15). doi: 10.1029/2003GL017581 [8] Le Pichon, A., Guilbert, J., Vega, A., et al., 2002. Ground-Coupled Air Waves and Diffracted Infrasound from the Arequipa Earthquake of June 23, 2001. Geophysical Research Letters, 29(18): 33-1-33-4. doi: 10.1029/2002GL015052 [9] Lin, L., Yang, Y.C., 2010. Observation & Study of a Kind of Low-Frequency Atmospheric Infrasonic Waves. Acta Acustica. , 35(2): 200-207 (in Chinese with English abstract). [10] Lü, J., Guo, Q., Feng, H.N., et al., 2012. Anomalous Infrasonic Waves before a Small Earthquake in Beijing. Chinese J. Geophys. , 55(10) : 3379-3385 (in Chinese with English abstract). doi: 10.1002/cjg2.1751/full [11] Mack, H., Flinn, E.A., 1971. Analysis of the Spatial Coherence of Short-Period Acoustic-Gravity Waves in the Atmosphere. Geophysical Journal of the Royal Astronomical Society, 26(1-4): 255-269. doi: 10.1111/j.1365-246X.1971.tb03399.x [12] Mikumo, T., Watada, S., 2009. Acoustic-Gravity Waves from Earthquake Sources. In: Le Pichon, A., Blanc, E., Hauchecorne, A., eds., Infrasound Monitoring for Atmospheric Studies. Springer, Berlin, 263-279. [13] Olson, J.V., Wilson, C.R., Hansen, R.A., 2003. Infrasound Associated with the 2002 Denali Fault Earthquake, Alaska. Geophysical Research Letters, 30(23). doi: 10.1029/2003GL018568 [14] Poggi, V., Fäh, D., 2010. Estimating Rayleigh Wave Particle Motion from Three-Component Array Analysis of Ambient Vibrations. Geophysical Journal International, 180(1): 251-267. doi: 10.1111/j.1365-246X.2009.04402.x [15] Shao, C.J., Tang, L., Li, X.F., 2005. Characteristics of Infrasonic Waves Caused by the Ms8.0 Earthquake in 2003 in Hokkaido, Japan. Earthquake, 25(1): 74-80 (in Chinese with English abstract). http://www.researchgate.net/publication/289896019_Characteristics_of_infrasonic_waves_caused_by_the_Ms80_earthquake_in_2003_in_Hokkaido_Japan [16] Watada, S., Kunugi, T., Hirata, K., et al., 2006. Atmospheric Pressure Change Associated with the 2003 Tokachi-Oki Earthquake. Geophysical Research Letters, 33(24). doi: 10.1029/2006GL027967 [17] Xie, J.L., Tao, Z.D., Xie, Z.H., 2003. A High Sensitivity Wide-Band Infrasound Condenser Microphone. Nuclear Electronics & Detection Technology, 23(5): 428-432 (in Chinese with English abstract). http://www.researchgate.net/publication/292668839_High_sensitivity_wide-band_infrasound_condenser_microphone [18] 崔东源, 和跃时, 2003. 利用多台方位角计算震中的尝试. 东北地震研究, 19(4): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ200304005.htm [19] 孔选林, 李录明, 罗省贤, 2008. 各向异性介质中的地震波射线正演. 物探化探计算技术, 30(3): 178-184. doi: 10.3969/j.issn.1001-1749.2008.03.003 [20] 林琳, 杨亦春, 2010. 大气中一种低频次声波观测研究. 声学学报, 35(2): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201002017.htm [21] 吕君, 郭泉, 冯浩楠, 等, 2012. 北京地震前的异常次声波. 地球物理学报, 55(10): 3379-3385. doi: 10.6038/j.issn.0001-5733.2012.10.020 [22] 邵长金, 唐炼, 李相方, 2005.2003年日本北海道8.0级地震次声波特征研究. 地震, 25(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200501010.htm [23] 谢金来, 陶中达, 谢照华, 2003. 高灵敏度宽频带电容次声传感器. 核电子学与探测技术, 23(5): 428-432. doi: 10.3969/j.issn.0258-0934.2003.05.011