Continental Seismotectonic System: Example from Qinghai-Tibet Plateau and Its Adjacent Areas
-
摘要: 青藏高原及邻区三角形发震构造域是全球大陆最显著的地震多发区.脆性活动断层及其弹性回跳模式无法合理解释该区深度集中分布在10~40 km的点状震源.针对发震构造和地震机理不明确这一重大科学问题, 以大陆动力学和地球系统动力学新思想为指导, 对青藏高原及邻区发震构造系统进行域、层、带、点相关研究, 阐明大陆地震构造系统的结构型式, 认为下地壳固态流变及其韧性剪切带是提供地震能量的孕震构造, 中地壳韧-脆性剪切带是累积地震能量的发震构造, 上地壳脆性断裂是释放地震能量的释震构造.在研究青藏高原及邻区地震构造系统及其形成背景的基础上, 进一步论证了大陆地震热流体撞击的形成机理: 地幔墙导致大洋中脊之下的软流圈热流物质层流到大陆特定部位汇聚加厚并底辟上升, 造成大陆下地壳部分熔融和固态流变, 并改变莫霍面的产状, 固态流变物质侧向非均匀流动, 形成大陆盆山体系, 流动的韧性下地壳与脆性上地壳之间具有韧-脆性剪切滑脱性质的中地壳不断积累由下地壳热能转换而来的应变能, 形成发震层, 震源定位于下地壳热流物质富集带("热河")中的固态-半固态流变物质撞击到强弱层块之间的构造边界, 不同热构造环境和撞击角度产生5种不同类型的地震.从而为大陆地震的科学预测奠定了全新的理论基础.Abstract: Triangular earthquake domain covering the Qinghai-Tibet Plateau and its adjacent areas is the most significant earthquake-prone area in the continent all overthe world. Stratiform distribution of hypocenters between 10 and 40 km can't be reasonably explained by brittle active faults and the elastic rebound model. To explore unknown seismogenic tectonics and earthquake mechanism, in this paper systematically is discussed the relationship of seismotectonic domain, seismotectonic layer, seismotectonic belt and seismotectonic point of the Qinghai-Tibet Plateau and its adjacent areas systematically is discussed based on the new understanding of continental dynamics and earth system dynamics. This paper elucidates the structural pattern of continental seismotectonic system: lower crustal ductile shear zone is the seismotectonic layer providing earthquake energy; middle crustal ductile-brittle shear zone is the hypocenter layer accumulating earthquake energy; and upper crustal brittle domain releases earthquake energy by faulting. Based on the study of seismotectonic system and tectonic settings upon the Qinghai-Tibet Plateau and its adjacent areas, in this paper further demonstrated the thermal fluid impacting mechanism is demonstrated asthenospheric laminar flow under the mid-ocean ridge driven by upwelling of the wall-like deep mantle magma transports mantle thermal energy and rheological material into continent where thickened asthenosphere diapirism results in incline of the Moho and inhomogeneous solid flow of lower continental crust from basin to mountain, the middle crustal ductile-brittle shear zone between ductile flowing lower crust and the brittle upper crust forms seismogenic layer by thermal energy-strain energy conversion. Hypocenter is located at the impacting point where abnormal flowing thermal fluid in lower crustal flow channel ("thermal river") impacts to the boundary between strong blocks (or layer) and weak blocks (or layer), and 5 different types of earthquakes are divided basen on different thermal tectonic environments and impacting angles. The new earthquake mechanism lays the theoretical foundation for scientific earthquake prediction.
-
图 2 青藏高原及邻区三角形发震构造域廊带内地震剖面分布(剖面位置见图 1)
图中圆圈代表Ms5.5以上地震
Fig. 2. 2Earthquake distribution in the profile of the triangular earthquake domain covering the Qinghai-Tibet Plateau and its adjacent area
图 3 青藏高原下地壳“热河”与地震类型(GPS及底图据文献Zhang et al., 2004)
Fig. 3. Lower crustal "Thermal River" in Qinghai-Tibet Plateau and earthquake types
-
[1] Chen, G.F., Hao, H.J., Feng, M.X., et al., 2013. Temporal-Spatial Structure of Thermal Disaster Chain in Southwest China and Its Relation with the Lushan Earthquake. Earth Science Frontiers, 20(6): 141-148(in Chinese with English abstract). http://www.researchgate.net/publication/288643813_Earthquake_prediction_From_Lushan_earthquake_to_continental_earthquakes [2] Feng, R., Ma, Z.J., Fang, J., et al., 2007. A Developing Plate Boundary: Tianshan-Baykal Active Tectonic Belt. Earth Science Frontiers, 14(4): 1-17(in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60027-X [3] Gao, X.L., Ma, X.J., Li, X.L., 2010. A Surrounding and Deep Dynamic Context of the Great Triangle-Shaped Seismic Region in the Eastern Asia Continent. Earth Science Frontiers, 17(4): 33-42(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201004005.htm [4] Li, D.W., 1992. On Tectonic Asymmetrical Evolution of the Himalayan Orogenic Belt. Earth Science—Journal of China University of Geosciences, 17(5): 539-545(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199205008.htm [5] Li, D.W., 1993. The Style of Continental Structure and Model of Continental Dynamics. Advance in Earth Sciences, 8(5): 88-93(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ199305010.htm [6] Li, D.W., 1994. Metallogenic Conditions and Prospect Analysis in Southern Tibet. Journal Guilin College of Geology, 14(2): 131-138(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX402.003.htm [7] Li, D.W., 1995a. Speculations on Continental Tectonics. Earth Science—Journal of China University of Geosciences, 20(1): 10-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX501.001.htm [8] Li, D.W., 1995b. On Continental Tectonics and Its Dynamics. Earth Science—Journal of China University of Geosciences, 20(1): 19-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX501.002.htm [9] Li, D.W., 2003. A New Model for the Uplifting Mechanism of Qinghai-Tibet Plateau. Earth Science—Journal of China University of Geosciences, 28(6): 593-600(in Chinese with English abstract). http://www.researchgate.net/publication/292553045_New_model_for_uplifting_mechanism_of_Qinghai-Tibet_plateau [10] Li, D.W., 2004. Late Cenozoic Intraplate Orogeny and Dynamic Metallogeny in the Southern Qinghai-Tibet Plateau. Earth Science Frontiers, 11(4): 361-369 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404004.htm [11] Li, D.W., 2005a. Outline of the Earth System Dynamics. Geotectonica et Metallogenia, 29(3): 285-294(in Chinese with English abstract). http://www.researchgate.net/publication/287655601_Outline_of_earth_system_dynamics [12] Li, D.W., 2005b. Theoretical Prediction and Scientific Exploration: The Gangdese Porphyry Copper Deposits in Tibet as An Example. Geological Science and Technology Information, 24(3): 48-54(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ200503011.htm [13] Li, D.W., 2008a. Continental Lower Crustal Flow: Channel Flow and Laminar Flow. Earth Science Frontiers, 15(3): 130-139. doi: 10.1016/S1872-5791(08)60065-2 [14] Li, D.W., 2008b. Mechanism and Prediction of the Intraplate Earthquakes: An Example from Wenchuan Earthquake in Sichuan Province. Geological Science and Technology Information, 27(5): 1-6(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ200805002.htm [15] Li, D.W., 2008c. Three-Stage Tectonic Evolution and Metallogenic Evolution in the Qinghai-Tibet Plateau and Its Adjacent Area. Earth Science—Journal of China University of Geosciences, 33(6): 723-742(in Chinese with English abstract). http://www.researchgate.net/publication/287632167_Three-stage_tectonic_evolution_and_metallogenic_evolution_in_the_qinghai-tibet_plateau_and_its_adjacent_area [16] Li, D.W., 2010. Temporal-Spatial Structure of Intraplate Uplift in the Qinghai-Tibet Plateau. Acta Geologica Sinica, 84(1): 105-134. doi: 10.1111/j.1755-6724.2010.00174.x [17] Li, D.W., 2010. The Regularity and Mechanism of East Kunlun, Wenchuan, and Yushu Earthquakes and Discussion on Genesis and Prediction of Continental Earthquakes. Earth Science Frontiers, 17(5): 179-192(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201005016 [18] Li, D.W., 2011. Earth System Dynamics and Earthquake Genesis and Its Four-Dimensional Prediction. Xiangshan Science Conferences Assembling: Frontiers and Future of Science(2009-2011). Science Press, Beijing, 184-195(in Chinese). [19] Li, D.W., 2012. Preliminary Discussion on Earth's Natural Hazard System. Geological Science and Technology Information, 31(5): 69-75(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201205011.htm [20] Li, D.W., 2013. Lower Crustal Flow from Ganges Basin into the Tibetan Plateau since the Miocene: Effects and Mechanism. Acta Geologica Sinica, 87(Z1): 362-363. http://www.geojournals.cn/dzxbcn/ch/reader/view_abstract.aspx?file_no=dzxben2003z10204&flag=1 [21] Li, D.W., 2014. Multistage Cycle of the Earth and Its Resource, Energy, Disaster and Environmental Effect. Geological Science and Technology Information, 33(1): 1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201401002.htm [22] Li, D.W., Chen, G.F., Chen, J.L., et al., 2013a. Earthquake Prediction: From Lushan Earthquake to Continental Earthquakes. Earth Science Frontiers, 20(3): 1-10(in Chinese with English abstract). http://www.researchgate.net/publication/288643813_Earthquake_prediction_From_Lushan_earthquake_to_continental_earthquakes [23] Li, D.W., Hao, H.J., Liu, J., et al., 2013b. The Structure and Mechanism of Thermal Disaster Chains and the Trend Analysis of Strong Earthquakes in North China. Earth Science Frontiers, 20(6): 102-108(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201306017.htm [24] Li, D.W., Ji, Y.L., 2000. Laminar Flow in the Lower Continental Crust and Its Significance for Continental Dynamics. Seismology and Geology, 22(1): 89-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200001011.htm [25] Li, D.W., Xia, Y.P., Xu, L.G., 2009. Coupling and Formation Mechanism of Continental Intraplate Basin and Orogen—Examples from the Qinghai-Tibet Plateau and Adjacent Basins. Earth Science Frontiers, 16(3): 110-119(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60097-4 [26] Luo, W.X., Li, D.W., Wang, X.F., 2008. Focal Depth and Mechanism of Intraplate Earthquakes in the Qinghai-Tibet Plateau. Earth Science—Journal of China University of Geosciences, 33(5): 618-626(in Chinese with English abstract). doi: 10.3799/dqkx.2008.076 [27] Ma, Z.J., Zhang, J.S., Liu, G.D., et al., 1990. Current State of Research on Continental Seismogenic Layer—International Workshop Held in Beijing, April 27-30, 1990. Seismology and Geology, 12(3): 262-264(in Chinese). http://www.researchgate.net/publication/313472101_Current_state_of_research_on_continental_seismogenic_layer-international_workshop_held_in_Beijing_April_27-30_1990 [28] Maggi, A., Jackson, J.A., McKenzie, D., et al., 2000. Earthquake Focal Depths, Effective Elastic Thickness, and the Strength of the Continental Lithosphere. Geology, 28(6): 495-498. doi:10.1130/0091-7613(2000)28<495:EFDEET>2.0.CO;2 [29] Wang, J.Y., Huang, S.P., 1990. Compilation of Heat Flow Data in the China Continental Area (2nd Edition). Seismology and Geology, 12(4): 351-363, 366(in Chinese). [30] Wang, Y., Deng, J.F., Wang, J.Y., et al., 2001. Terrestrial Heat Flow Pattern and Thermo-Tectonic Domains in the Continental Area of China. Journal of the Graduate School of the Chinese Academy of Sciences, 18(1): 51-58(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZKYB200101008.htm [31] Zhang, G.M., Li, L., Li, K.W., et al., 2001. Group Strong Earthquakes and Triggering by Tidal Stress. Earthquake Research in China, 17(2): 110-120(in Chinese with English abstract). http://www.cqvip.com/QK/84216X/200104/1000531760.html [32] Zhang, J.S., Gao, X.L., Ma, Z.J., 2013. Atlas of Seismotectonics in Central Asia. Seismological Press, Beijing, 29-77 (in Chinese). [33] Zhang, P.Z., Shen, Z.K., Burgman, R., et al., 2004. Continuous Deformation of the Tibetan Plateau Constrained from Global Positioning Measurements. Geology, 32(9): 809-812. doi: 10.1130/G20554.1 [34] Zhao, J.L., Yuan, Y.M., Li, D.W., et al., 2007. Geophysical Anomaly of Lower Crust of Qinghai-Tibet Plateau and Its Adjacent Regions. Geological Science and Technology Information, 26(2): 13-18, 29(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200702002.htm [35] 陈桂凡, 郝海健, 冯旻譞, 等, 2013. 西南地区热灾害链的时空结构及其与芦山地震的关系. 地学前缘, 20(6): 141-148. [36] 冯锐, 马宗晋, 方剑, 等, 2007. 发展中的板块边界: 天山-贝加尔活动构造带. 地学前缘, 14(4): 1-17. doi: 10.3321/j.issn:1005-2321.2007.04.001 [37] 高祥林, 马晓静, 李晓丽, 2010. 亚洲东部大三角地震构造区的周边和深部动力环境. 地学前缘, 17(4): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201004005.htm [38] 李德威, 1992. 喜马拉雅造山带的构造不对称演化. 地球科学——中国地质大学学报, 17(5): 539-545. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199205008.htm [39] 李德威, 1993. 大陆构造样式及大陆动力学模式初探. 地球科学进展, 8(5): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199305010.htm [40] 李德威, 1994. 藏南成矿条件及找矿远景分析. 桂林冶金地质学院报, 14(2): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX402.003.htm [41] 李德威, 1995a. 关于大陆构造的思考. 地球科学——中国地质大学学报, 20(1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX501.001.htm [42] 李德威, 1995b. 再论大陆构造与动力学. 地球科学——中国地质大学学报, 20(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX501.002.htm [43] 李德威, 2003. 青藏高原隆升机制新模式. 地球科学——中国地质大学学报, 28(6): 593-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306002.htm [44] 李德威, 2004. 青藏高原南部晚新生代板内造山与动力成矿. 地学前缘, 11(4): 361-369. doi: 10.3321/j.issn:1005-2321.2004.04.003 [45] 李德威, 2005a. 地球系统动力学纲要. 大地构造与成矿学, 29(3): 285-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200503001.htm [46] 李德威, 2005b. 理论预测与科学找矿-以西藏冈底斯斑岩铜矿为例. 地质科技情报, 24(3): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200503011.htm [47] 李德威, 2008a. 大陆板内地震的发震机理与地震预报-以汶川地震为例. 地质科技情报, 27(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805002.htm [48] 李德威, 2008b. 青藏高原及邻区三阶段构造演化与成矿演化. 地球科学——中国地质大学学报, 33(6): 723-742. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806000.htm [49] 李德威, 2010. 东昆仑、玉树、汶川地震的发生规律和形成机理: 兼论大陆地震成因与预测. 地学前缘, 17(5): 179-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005018.htm [50] 李德威, 2011. 地球系统动力学与地震成因及其四维预测. 香山科学会议编: 科学前沿与未来(2009-2011), 北京: 科学出版社, 184-195. [51] 李德威, 2012. 初论地球自然灾害系统. 地质科技情报, 31(5): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205011.htm [52] 李德威, 2014. 地球多级循环及其资源、能源、灾害、环境效应. 地质科技情报, 33(1): 1-8. doi: 10.3969/j.issn.1009-6248.2014.01.001 [53] 李德威, 陈桂凡, 陈继乐, 等, 2013a. 地震预测-从芦山地震到大陆地震. 地学前缘, 20(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303001.htm [54] 李德威, 郝海健, 刘娇, 等, 2013b. 华北热灾害链的结构、成因及强震趋势分析, 地学前缘, 20(6): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306017.htm [55] 李德威, 纪云龙, 2000. 大陆下地壳层流作用及其大陆动力学意义. 地震地质, 22(1): 89-96. doi: 10.3969/j.issn.0253-4967.2000.01.012 [56] 李德威, 夏义平, 徐礼贵, 2009. 大陆板内盆山耦合及盆山成因-以青藏高原及周边盆地为例. 地学前缘, 16(3) : 110-119. doi: 10.3321/j.issn:1005-2321.2009.03.007 [57] 罗文行, 李德威, 汪校锋, 2008. 青藏高原板内地震震源深度分布规律及其成因, 地球科学——中国地质大学学报, 33(5): 618-626. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805006.htm [58] 马宗晋, 张家声, 刘国栋, 等, 1990. 大陆多震层研究现状和讨论. 地震地质, 12(3): 262-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199003010.htm [59] 汪集旸, 黄少鹏, 1990. 中国大陆地区大地热流数据汇编(第二版). 地震地质, 12(4): 351-363, 366. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199004010.htm [60] 汪洋, 邓晋福, 汪集旸, 等, 2001. 中国大陆热流分布特征及热-构造分区. 中国科学院研究生院学报, 18(1): 51-58. doi: 10.3969/j.issn.1002-1175.2001.01.008 [61] 张国民, 李丽, 黎凯武, 等, 2001. 强震成组活动与潮汐力调制触发. 中国地震, 17(2): 110-120. doi: 10.3969/j.issn.1001-4683.2001.02.003 [62] 张家声, 高祥林, 马宗晋, 2013. 亚洲中部地震构造图集. 北京: 地震出版社, 29-77. [63] 赵继龙, 袁晏明, 李德威, 等, 2007. 青藏高原及周边地区下地壳地球物理异常及成因. 地质科技情报, 26(2): 13-18, 29. doi: 10.3969/j.issn.1000-7849.2007.02.003