• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于嫦娥二号卫星微波辐射计亮温数据反演月壤介电常数

    连懿 陈圣波 孟治国 张锋 张莹

    连懿, 陈圣波, 孟治国, 张锋, 张莹, 2014. 基于嫦娥二号卫星微波辐射计亮温数据反演月壤介电常数. 地球科学, 39(11): 1644-1650. doi: 10.3799/dqkx.2014.158
    引用本文: 连懿, 陈圣波, 孟治国, 张锋, 张莹, 2014. 基于嫦娥二号卫星微波辐射计亮温数据反演月壤介电常数. 地球科学, 39(11): 1644-1650. doi: 10.3799/dqkx.2014.158
    Lian Yi, Chen Shengbo, Meng Zhiguo, Zhang Feng, Zhang Ying, 2014. Dielectric Constant of Lunar Soil Derived from Chang'E-2 Passive Microwave Radiometer Measurements. Earth Science, 39(11): 1644-1650. doi: 10.3799/dqkx.2014.158
    Citation: Lian Yi, Chen Shengbo, Meng Zhiguo, Zhang Feng, Zhang Ying, 2014. Dielectric Constant of Lunar Soil Derived from Chang'E-2 Passive Microwave Radiometer Measurements. Earth Science, 39(11): 1644-1650. doi: 10.3799/dqkx.2014.158

    基于嫦娥二号卫星微波辐射计亮温数据反演月壤介电常数

    doi: 10.3799/dqkx.2014.158
    基金项目: 

    国家自然科学基金项目 41372337

    详细信息
      作者简介:

      连懿(1986-), 男, 博士研究生, 主要从事月球微波遥感研究.E-mail: fishlice@163.com

    • 中图分类号: P407

    Dielectric Constant of Lunar Soil Derived from Chang'E-2 Passive Microwave Radiometer Measurements

    • 摘要: 月壤介电常数是当前月球微波遥感探测的基础, 是月壤厚度、成分等信息提取不可或缺的参数.为了实现全月介电常数反演, 通过对嫦娥二号卫星微波辐射计亮温数据进行时角校正, 得到同一时角的全月微波亮温图.全月微波亮温表现出随月球地形、月壤成分及纬度变化的特征.基于校正后的微波辐射亮温, 结合辐射传输模型, 通过解算相关参数, 反演得到3GHz频率下全月介电常数分布.其中, 月海地区的介电常数实部高于月陆地区, 且月球极地区域介电常数实部偏低; 而介电常数虚部则在月海区域和艾肯盆地较高.通过模拟月表介电常数实验对反演结果进行温度校正, 得到22℃下全月介电常数.将反演结果和月壤真实样品的介电常数测量值进行比较评价.结果表明介电常数实部相对误差都低于11%;虚部相对误差偏大, 但其差值最大仅为0.02.因此, 基于嫦娥二号卫星微波辐射计亮温数据反演月表介电常数的方法是可行的.

       

    • 图  1  正午时刻3GHz全月亮温

      Fig.  1.  Lunar bright temperature image at Midday at 3GHz

      图  2  月壤中辐射传输机理

      Fig.  2.  Radiative transfer model of passive microwave in lunar regolith

      图  3  反演3GHz全月介电常数实部

      Fig.  3.  Inversion of real part of dielectric constant of the lunar for 3GHz channel

      图  4  反演3GHz下全月介电常数虚部

      Fig.  4.  Inversion of imaginary part of dielectric constant of the lunar for 3GHz channel

      图  5  3GHz介电常数实部随温度变化

      Fig.  5.  Real part of dielectric constant versus temperature for 3GHz channel

      图  6  22℃下月球表面介电常数实部

      Fig.  6.  Real part of dielectric constant of the lunar for 3GHz channel at 22℃

      图  7  22℃下月球表面介电常数虚部

      Fig.  7.  Imaginary part of dielectric constant of the lunar for 3GHz channel at 22℃

      表  1  MRM反演结果与月壤真实样品测量结果比较

      Table  1.   Comparison between the experimental results from real lunar soil and MRM inversion results

      月壤真实样品 MRM反演结果 相对误差(%) 差值(%)
      ε′ ε″ ε′ ε″ ε′ ε″
      Apollo 11 2.530 0.0428 2.47 0.0560 2.55 -30.84
      Apollo 12 2.280 0.0315 2.45 0.0336 -7.38 -6.80
      Apollo 14 2.620 0.0220 2.40 0.0347 8.22 -57.73
      Apollo 15 2.375 0.0196 2.48 0.0185 -4.30 5.61
      Apollo 16 2.440 0.0076 2.18 0.0137 10.65 -80.26
      Apollo 17 2.810 0.0158 2.94 0.0231 -4.62 -46.20
      下载: 导出CSV
    • [1] Berlin, G.L., Tarabzouni, M.A., Al-Naser, A.H., et al., 1986. SIR-B Subsurface Imaging of a Sand-Buried Landscape: Al Labbah Plateau, Saudi Arabia. IEEE Transactions on Geoscience and Remote Sensing, GE-24(4): 595-602. doi: 10.1109/TGRS.1986.289676
      [2] Fa, W.Z., Jin, Y.Q., 2007. Quantitative Estimation of Helium-3 Spatial Distribution in the Lunar Regolith Layer. Icarus, 1990: 15-23. doi: 10.1016/j.icarus.2007.03.014
      [3] Fa, W.Z., Jin, Y.Q., 2010. A Primary Analysis of Microwave Brightness Temperature of Lunar Surface from Chang-E 1 Multi-Channel Adiometer Observation and Inversion of Regolith Layer Thickness. Icarus, 207: 605-615. doi: 10.1016/j.icarus.2009.11.034
      [4] Jiang, J.S., Wang, Z.Z., Li, Y., 2008. Study on Theory and Application of CE-1 Micronave Sounding Lunar Surface. Engineering Sciences, 10(6): 16-22 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-1742.2008.06.003
      [5] Lawson, S.L., Jakosky, B.M., Park, H.S., 2000. Brightness Temperature of the Lunar Surface: Calibration and Global Analysis of the Clementine Long-Wave Infrared Camera Data. Journal of Geophysical Research, 105: 4273-4290. doi: 10.1007/s11432-010-0020-1
      [6] Lucey, P.G., Blewett, D.T., Hawke, B.R., 1998. Mapping the FeO and TiO2 Content of the Lunar Surface with Multispectral Imagery. Journal of Geophysical Research, 103: 3679-3699. doi: 10.1029/97JE03019
      [7] Lucey, P.G., Blewett, D.T., Jollifff, B.L., 2000. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. Journal of Geophysical Research, 105: 20297-20305. doi: 10.1029/1999JE001117
      [8] Lucey, P.G., Taylor, G.J., Malaret, E., et al., 1995. Abundance and Distribution of Iron on the Moon. Science, 268: 1855-1858. doi: 10.1126/science.268.5214.1150
      [9] Matveev, Y.G., Suchkin, G.L., Troitskii, V.S., 1966. Change of Lunite Density with Depth in the Surface Layer. Soviet Astronomy, 9(4): 626-631. http://adsabs.harvard.edu/abs/1966SvA.....9..626M
      [10] Meng, Z.G., 2008. Lunar Regolith Parameters Retrieval Using Radiative Transfer Simulation and Look-up Technique (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      [11] Meng, Z.G., Chen, S.B., Du, X.J., et al., 2011a. Influence of Temperature and Frequency on Microwave Dielectric Properties of Lunar Regolith Stimulant. Chinese Geographical Science, 21(1): 94-101. doi: 10.1007/s11769-011-0443-7
      [12] Meng, Z.G., Chen, S.B., Liu, C., et al., 2008. Simulation on Passive Microwave Radiative Transfer in Inhomogeneous Lunar Regolith. Journal of Jilin University (Earth Science Edition), 38(6): 1070-1074 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200806028.htm
      [13] Meng, Z.G., Chen, S.B., Lu, P., et al., 2011b. Research on the Distribution and Content of Water Ice in Lunar Pole Regions Using Clementine UVVIS Data. Journal of Earth Science, 22(5): 595-600. doi: 10.1007/s12583-011-0210-9
      [14] Shkuratov, Y.G., Bondarenko, N.V., 2001. Regolith Layer Thickness Mapping of the Moon by Radar and Optical Data. Icarus, 149: 329-338. doi: 10.1006/icar.2000.6545
      [15] Shkuratov, Y.G., Kaydash, V.G., Opanasenko, N.V., 1999. Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside. Icarus, 137: 222-234. doi: 10.1006/icar.1999.6046
      [16] Tyler, G.L., 1968. Brewster Angle of the Lunar Crust. Nature, 219(B): 1243-1244. doi: 10.1038/2191243a0
      [17] Wang, Z.Z., Li, Y., Jiang, J.S., et al., 2009. Lunar Surface Dielectric Constant, Regolith Thickness and Helium-3 Abundance Distributions Retrieved from Microwave Brightness Temperatures of CE-1 Lunar Microwave Sounder. Science in China (Series D), 39(8): 1069-1084 (in Chinese). http://www.researchgate.net/publication/313716035_Lunar_surface_dielectric_constant_regolith_thickness_and_helium-3_abundance_distributions_retrieved_from_microwave_brightness_temperatures_of_CE-1_Lunar_Microwave_Sounder
      [18] Zheng, Y.C., Tsang, K.T., Chan, K.L., et al., 2012. First Microwave Map of the Moon with Chang'e-1 Data: The Role of Local Time in Global Imaging. Icarus, 219: 194-210. doi: 10.1016/j.icarus.2012.02.017
      [19] 姜景山, 王振占, 李芸, 2008. 嫦娥1号卫星微波探月技术机理和应用研究. 中国工程科学, 10(6): 16-22. doi: 10.3969/j.issn.1009-1742.2008.06.003
      [20] 孟治国, 2008. 月壤参数的辐射传输模拟和查找反演技术研究(博士学位论文). 长春: 吉林大学.
      [21] 孟治国, 陈圣波, 刘财, 等, 2008. 非均匀月壤介质中的被动微波辐射传输模拟. 吉林大学学报(地球科学版), 38(6): 1070-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200806028.htm
      [22] 王振占, 李芸, 姜景山, 等, 2009. 用"嫦娥一号"卫星微波探测仪亮温反演月壤厚度和3He资源量评估的方法及初步结果分析. 中国科学(D辑), 39(8): 1069-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200908006.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  3243
    • HTML全文浏览量:  131
    • PDF下载量:  682
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-03-21
    • 刊出日期:  2014-11-01

    目录

      /

      返回文章
      返回