Characteristics and Applications of Variogram for Gravity and Magnetic Fields
-
摘要: 用变差函数研究重磁场的区域变化特征.变差函数的变程反映重磁场的相干范围, 块金效应反映随机干扰, 基台值反映变异程度.重磁场的理论模拟说明: 重力场的相干范围大于磁场, 重磁场变程主要取决于场源深度, 浅源重磁场变差函数近似为球状模型或指数模型, 深源重磁场近似为连续性更好的高斯模型.磁场场源深度近似等于变程的一半, 重力场场源深度近似等于变程的四分之一.湖北大冶铁矿垂直分量磁异常具有几何各向异性, 北西-南东走向, 变差函数推测磁铁矿平均深度为250m.磁异常小波多尺度分解细节和逼近部分磁场具有协调几何各向异性, 变差函数的各阶场源深度估计结果与功率谱估计结果吻合.Abstract: The variogram is used to investigate the regional variation characteristics of gravity and magnetic fields in this study. The range of variogram reflects the coherent area; the nugget effect represents the random disturbance; and the sill means the variation degree. The theoretical simulations involving gravity and magnetic fields show that the coherent range of gravity field is larger than that of magnetic field. The range of potential gravity and magnetic field is mainly determined by the depth of field sources. The variogram for shallow sources is approximate to be a spherical or exponential model, while with the increase of the depth, it nearly becomes a more continuously Gaussian model. The depth of magnetic source is approximately equal to the half of the range, whereas the depth of gravity source is approximately equal to one quarter of the range. The real example of the vertical component magnetic anomaly of the Daye iron-ore deposit in Hubei has geometric anisotropy striking northwest-southeast direction. The variogram reveals that the average depth of magnetite orebodies is about 250m. The decomposed details and approximations of magnetic anomaly using wavelet transform have the coordinate geometric anisotropy. And the estimated depths using variogram ranges are in agreement with those gained by power spectrum method.
-
Key words:
- gravity and magnetic fields /
- variogram /
- range /
- nugget effect /
- sill /
- Daye iron-ore deposit /
- geostatistics
-
表 1 磁场与重力场变差函数变程估计场源的深度结果
Table 1. Estimated depths of field sources using variogram ranges of gravity and magnetic fields
真实深度(m) 100 200 300 400 500 600 磁场估计深度(m)(I=45°) 110.0 199.8 294.4 416.0 525.0 572.1 磁场估计深度(m)(I=90°) 110.0 199.8 294.4 430.4 534.0 574.2 重力场估计深度(m) 99.5 208.0 277.5 395.0 508.0 548.8 表 2 变差函数估计的场源深度与功率谱估计的场源深度结果对比
Table 2. Comparisons of estimated depths using variogram and power spectrum
小波分解 D1 D2 D3 D4 D5 A5 功率谱估计深度(m) 26 144 235 488 912 912 变差函数估计深度(m) 60.7 155.5 250.7 432.0 917.3 >1000 表 3 ΔZ磁异常小波分解细节和逼近在不同方向的变差函数变程
Table 3. Variogram ranges at different directions of the details and approximations of ΔZ magnetic anomalies using wavelet multi-scale decomposition
小波分解 东-西 北东-南西 南-北 北西-南东 D1 160 160 180 200 D2 340 260 280 400 D3 520 460 480 520 D4 920 820 780 820 D5 1880 1600 1720 1880 A5 - - - - -
[1] Bhattacharyya, B.K., 1966. Continuous Spectrum of the Total-Magnetic-Field Anomaly Due to a Rectangular Prismatic Body. Geophysics, 31(1): 97-121. doi: 10.1190/1.1439767 [2] Chilès, J.P., Guillen, A., 1984. Variogrammes et Krigeages Pour la Gravimétrie et le Magnétisme. Sciences de la Terre, Série Informatique, 20(1): 455-468 (in France). http://www.researchgate.net/publication/284269893_Variogrammes_et_krigeages_pour_la_gravimetrie_et_le_magnetisme [3] Gao, D.Z., Hou, Z.Z., Tang, J., 2000. Multiscale Analysis of Gravity Anomalies on East China and Adjacent Regions. Chinese Journal of Geophysics, 43(6): 842-849 (in Chinese with English abstract). http://www.researchgate.net/publication/260329160_Multiscale_Analysis_of_Gravity_Anomalies_on_East_China_Sea_and_Adjacent_Regions [4] Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York. [5] Hou, Z.Z., Yang, W.C., 1997. Wavelet Transform and Multi-Scale Analysis on Gravity Anomalies of China. Acta Geophysica Sinica, 40(1): 85-95 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQWX199701009.htm [6] Hu, G.D., 1985. Applications of Variogram in Mineral Prospecting. Geological Science and Technology Information, 4(4): 125-133 (in Chinese). [7] Journel, A.G., Huijbregts, C.J., 1978. Mining Geostatistics. Academic Press, London. [8] Li, S.L., Meng, X.H., Fang, Z.G., et al., 2007. Application of Fine Gravity and Magnetic Data Processing and Interpretation in the Prospecting of Crisis Mines. Earth Science—Journal of China University of Geosciences, 32(4): 559-563 (in Chinese with English abstract). [9] Li, W.G., Yang, S.L., Shao, X.J., et al., 2011. Application of Variogram in Reservoir Evaluation and Development: Taking Yangjiaba Oilfield for Example. Geological Science and Technology Information, 30(4): 83-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201104013.htm [10] Liu, T.Y., Wu, Z.C., Zhan, Y.L., et al., 2007. Wavelet Multi-Scale Decomposition of Magnetic Anomaly and Its Application in Searching for Deep-Buried Minerals in Crisis Mines: A Case Study from Daye Iron Mines. Earth Science—Journal of China University of Geosciences, 32(1): 135-140 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200701020.htm [11] Matheron, G., 1971. The Theroy of Regionalized Variables and Its Application. Centre of Geostatistics Fontainebleau, Fontainebleau. [12] Pei, T., Zhou, C.H., Li, Q.L., et al., 2002. Quantitative Computation on Temporal Relativity of Earthquakes Based on Semi-Variogram Analysis. Earthquake, 22(2): 17-21 (in Chinese with English abstract). [13] Sun, H.Q., 1990. Geostatistics and Applications. China University of Mining & Technology Press, Beijing (in Chinese). [14] Tang, S.H., Xue, Y.X., Zou, J.K., et al., 1985. Application of the Factor Kriging Analysis in Interpretation of Airborne Magnetic Data. Uranium Geology, 1(6): 27-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ198506004.htm [15] Xu, L.H., Chen, X.S., Jiang, Y., et al., 2012. A Comparative Analysis of Stochastic Inversion and Stochastic Simulation on Different Ranges of Variograms. Geophysical & Geochemical Exploration, 36(2): 224-227, 233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH201202014.htm [16] Yang, Y., Qu, S.L., Yin, X.Y., 2007. Using Spatial Filtering for Denoise of Horizon-Oriented Seismic Attributes Data. Oil Geophysical Prospecting, 42(2): 208-211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ200702016.htm [17] Yang, Y.S., Li, Y.Y., Liu, T.Y., et al., 2011. Interactive 3D forward Modeling of Total Field Surface and Three-Component Borehole Magnetic Data for the Daye Iron-Ore Deposit (Central China). Journal of Applied Geophysics, 75(2): 254-263. doi: 10.1016/j.jappgeo.2011.07.010 [18] 高德章, 侯遵泽, 唐建, 2000. 东海及邻区重力异常多尺度分解. 地球物理学报, 43(6): 842-849. doi: 10.3321/j.issn:0001-5733.2000.06.013 [19] 侯遵泽, 杨文采, 1997. 中国重力异常的小波变换与多尺度分析. 地球物理学报, 40(1): 85-95. doi: 10.3321/j.issn:0001-5733.1997.01.010 [20] 胡光道, 1985. 变差函数在矿床勘探中的应用. 地质科技情报, 4(4): 125-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198504028.htm [21] 李淑玲, 孟小红, 范正国, 等, 2007. 危机矿山重磁资料精细处理与解释: 以湖北省大冶铁矿为例. 地球科学——中国地质大学学报, 32(4): 559-563. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200704021.htm [22] 李武广, 杨胜来, 邵先杰, 等, 2011. 变差函数在储层评价及开发中的应用: 以杨家坝油田为例. 地质科技情报, 30(4): 83-87. doi: 10.3969/j.issn.1000-7849.2011.04.012 [23] 刘天佑, 吴招才, 詹应林, 等, 2007. 磁异常小波多尺度分解及危机矿山的深部找矿: 以大冶铁矿为例. 地球科学——中国地质大学学报, 32(1): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701020.htm [24] 裴韬, 周成虎, 李全林, 等, 2002. 基于变差函数分析的地震时间相关性定量估算. 地震, 22(2): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200202004.htm [25] 孙洪泉, 1990. 地质统计学及其应用. 北京: 中国矿业大学出版社. [26] 唐声喤, 薛禹选, 邹景柯, 等, 1985. 因子克立格法在解析航磁资料中的应用. 铀矿地质, 1(6): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ198506004.htm [27] 徐立恒, 陈显森, 姜岩, 等, 2012. 不同变差函数变程下随机反演与随机模拟对比分析. 物探与化探, 36(2): 224-227, 233. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201202014.htm [28] 杨阳, 曲寿利, 印兴耀, 2007. 沿层地震属性数据空间滤波去噪方法. 石油地球物理勘探, 42(2): 208-211. doi: 10.3321/j.issn:1000-7210.2007.02.017