EDZ Assessment for Underground Cavern by Acoustic Wave Method
-
摘要: 洞室开挖不可避免地会损伤岩体, 对于规模巨大、布置异常复杂的水电地下厂房围岩尤甚, 合理地确定开控损伤区(EDZ)分布成为地下洞室的信息化设计、施工和安全运营的关键性问题.在引入EDZ概念及强EDZ、弱EDZ和基本未损区分区的基础上, 提出采用声波测试方法来确定强EDZ和弱EDZ的分布.将声波波速-深度曲线划分为Ⅰ型、Ⅱ型和Ⅲ型等3种曲线类型, 根据曲线特征点, 对EDZ进行定性、半定量的初判.根据波速计算得出的损伤因子D, 对强、弱EDZ和基本未损区进行定量的判别.首次提出的基于声波测试法, 定性、半定量和定量相结合的综合研判法具有创新性, 为客观评价地下洞室EDZ提供了科学的方法.Abstract: Excavation Damaged Zone (EDZ) assessment is important for the design, execution and operation of modern underground engineering. However, it is very difficult to determine EDZ because of the complexity of lithology, geostress, excavation method, cavern size and shape, etc.. Based on its definition, EDZ is subdivided into excavation highly damaged zone (EHDZ), excavation slightly damaged zone (ESDZ) and basically undamaged zone in this paper. Acoustic wave velocity method is suggested to determine EDZ. The acoustic wave curves are classified into type Ⅰ, type Ⅱ and type Ⅲ. EHDZ and ESDZ can be qualitatively determined by characteristic points of acoustic wave curves. A damage factor D calculated by the acoustic wave velocities is adapted to quantitatively assess EDZ. It is found that the comprehensive method and index provide us a good assessment of EDZ for underground caverns.
-
Key words:
- underground cavern /
- Excavation Damaged Zone /
- acoustic wave method /
- damage factor /
- geology engineering /
-
表 1 损伤因子D与EDZ划分
Table 1. Damage factor D and EDZ dassifi catior
围岩分区 损伤因子D 损伤程度 声波曲线特征 强EDZ (EHDZ) D≥0.6 损伤显著 波速低、衰减快、降幅大 弱EDZ (ESDZ) 0.6>D>0.2 有损伤 波速有降低,曲线起伏大,具有震荡性 基本未损区(UDZ) D≤0.2 基本未损伤 波速高,曲线波动幅度小,渐趋定值 表 2 基于声波曲线特征和损伤因子D的EDZ判别结果
Table 2. Results of and EDZ assessment based on the curve characteristics of acoustic wave and damage factor D
测点 声波曲线特征 损伤因子D 差值 强EDZ(m) 弱EDZ(m) 强EDZ(m) 弱EDZ(m) (a) 4.0 5.0 2.4 5.0 强EDZ∶1.6m弱EDZ:0m (b) 4.0 8.0 4.0 8.0 0 (c) 2.0 - 2.0 - 0 -
[1] China Electricity Council, 2008. GB50287-2006 Code for Hydropower Engineering Geological Investigation. China Planning Press, Beijing (in Chinese). [2] Fan, Q.X., Wang, Y.F., 2011. A Case Study of Rock Mass Engineering of Underground Powerhouse at Xiluodu Hydropower Station. Chinese Journal of Rock Mechanics and Engineering, 30(Suppl. 1): 2986-2993 (in Chinese with English abstract). [3] Ji, X.M., 2005. Study on Mechanical and Hydraulic Behavior of Tunnel Surrounding Rock Masses in Excavation Disturbed Zone. Chinese Journal of Rock Mechanics and Engineering, 24(10): 1697-1702 (in Chinese with English abstract). [4] Li, S.J., Feng, X.T., Li, Z.H., et al., 2011. In Situ Experiments on Width and Evolution Characteristics of Excavation Damaged Zone in Deeply Buried Tunnels. Science China (Technological Sciences), 54(Suppl. 1): 167-174. doi: 10.1007/s11431-011-4637-0 [5] Li, S.J., Feng, X.T., Li, Z.H., et al., 2012. Evolution of Fractures in the Excavation Damaged Zone of a Deeply Buried Tunnel during TBM Construction. International Journal of Rock Mechanics and Mining Sciences, 55: 125-138. doi: 10.1016/j.ijrmms.2012.07.004 [6] Liu, N., Zhang, C.S., Chu, W.J., 2011. Detection and Analysis of Excavation Damage of Deep Tunnel. Rock and Soil Mechanics, 32 (Suppl. 2): 526-531, 538 (in Chinese with English abstract). [7] Martino, J.B., Chandler, N.A., 2004. Excavation-Induced Damage Studies at the Underground Research Laboratory. International Journal of Rock Mechanics and Mining Sciences, 41: 1413-1426. doi: 10.1016/j.ijmms.2004.09.010 [8] The Professional Standards Compilation Group of People's Republic of China, 2007. DL/T5389-2007 Construction Technical Specification on Rock-Foundation Excavating Engineering of Hydraulic Structures. China Water & Power Press, Beijing (in Chinese). [9] Uno, H., Tasaka, Y., Ishida, T., et al., 2002. Analysis and Evaluation of Excavation Loosened Zone around Caverns Based on In-Situ Measurements. Journal of Japan Civil Engineer, 722/Ⅲ-61: 13-24. [10] Wu, F.Q., Liu, J.Y., Liu, T., et al., 2009. A Method for Assessment of Excavation Damaged Zone (EDZ) of a Rock Mass and Its Application to a Dam Foundation Case. Engineering Geology, 104: 254-262. doi: 10.1016/j.enggeo.2008.11.005 [11] Wu, S. Y, Shen, M.B., Wang, J., 2010. Jinping Hydropower Project: Main Technical Issues on Engineering Geology and Rock Mechanics. Bulletin of Engineering Geology and the Environment, 69: 325-332. doi: 10.1007/s10064-010-0272-4 [12] Yan, P., Lu, W.B., Chen, M., et al., 2011. In-Situ Test Research on Influence of Excavation Method on Induced Damage Zone in Deep Tunnel. Chinese Journal of Rock Mechanics and Engineering, 30(6): 1097-1106 (in Chinese with English abstract). [13] Zhang, J.H., Hu, Z.X., Yang, Y.T., et al., 2011. Acoustic Velocity Fitting and Monitoring Feedback Analysis of Surrounding Rock Loosing Zone in Underground Powerhouse. Chinese Journal of Rock Mechanics and Engineering, 30(6): 1191-1197 (in Chinese with English abstract). [14] Zhao, H.B., Fu, J.J., Zhou, J.P., 2011. Dynamic Analysis of Loose Zone at the Sidewall of Large Underground Cavern in High Geostress Zone. Journal of Yangtze River Scientific Research Institute, 28(9): 35-39 (in Chinese with English abstract). [15] Zhu, Z.Q., Sheng, Q., Zhang, Y.H., et al., 2013. Research on Excavation Damage Zone of Underground Powerhouse of Dagangshan Hydropower Station. Chinese Journal of Rock Mechanics and Engineering, 30(4): 734-739 (in Chinese with English abstract). [16] Zou, H.Y., Xiao, M., 2010. Study of Methodology for Assessment of Excavation Disturbed Zone of Underground Caverns. Chinese Journal of Rock Mechanics and Engineering, 29(3): 513-519 (in Chinese with English abstract). [17] 中国电力企业联合会, 2008. GB50287-2006水力发电工程地质勘察规范. 北京: 中国计划出版社. [18] 樊启祥, 王义峰, 2011. 溪洛渡水电站地下厂房岩体工程实践. 岩石力学与工程学报, 30(增刊1): 2986-2993. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1052.htm [19] 吉小明, 2005. 隧道开挖的围岩损伤扰动带分析. 岩石力学与工程学报, 24(10): 1697-1702. doi: 10.3321/j.issn:1000-6915.2005.10.011 [20] 刘宁, 张春生, 诸卫江, 2011. 深埋隧洞开挖损伤区的检测及特征分析. 岩土力学, 32(增刊2): 526-531, 538. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2087.htm [21] 中华人民共和国行业标准编写组, 2007. DL/T5389-2007水工建筑物岩石基础开挖工程施工技术规范. 北京: 中国水利电力出版社. [22] 严鹏, 卢文波, 陈明, 等, 2011. 深部岩体开挖方式对损伤区影响的试验研究. 岩石力学与工程学报, 30(6): 1097-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106005.htm [23] 张建海, 胡著秀, 杨永涛, 等, 2011. 地下厂房围岩松动圈声波拟合及监测反馈分析. 岩石力学与工程学报, 30(6): 1191-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106016.htm [24] 赵海斌, 付建军, 周江平, 2011. 高地应力区大型地下洞室边墙松动圈动态分析研究. 长江科学院院报, 28(9): 35-39. doi: 10.3969/j.issn.1001-5485.2011.09.008 [25] 朱泽奇, 盛谦, 张勇慧, 等, 2013. 大岗山水电站地下厂房洞室群围岩开挖损伤区研究. 岩石力学与工程学报, 32(4): 734-739. doi: 10.3969/j.issn.1000-6915.2013.04.011 [26] 邹红英, 肖明, 2010. 地下洞室开挖松动圈评估方法研究. 岩石力学与工程学报, 29(3): 513-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003012.htm