• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    激光拉曼原位观测储层温度压力条件下乙烷在纯水中的扩散系数

    蔺林林 郭会荣 郝璇 黄忆琦

    蔺林林, 郭会荣, 郝璇, 黄忆琦, 2014. 激光拉曼原位观测储层温度压力条件下乙烷在纯水中的扩散系数. 地球科学, 39(11): 1584-1592. doi: 10.3799/dqkx.2014.151
    引用本文: 蔺林林, 郭会荣, 郝璇, 黄忆琦, 2014. 激光拉曼原位观测储层温度压力条件下乙烷在纯水中的扩散系数. 地球科学, 39(11): 1584-1592. doi: 10.3799/dqkx.2014.151
    Lin Linlin, Guo Huirong, Hao Xuan, Huang Yiqi, 2014. Determination of Diffusion Coefficients of Ethane in Water at High Pressure and Temperature with In-Situ Raman Spectroscopy. Earth Science, 39(11): 1584-1592. doi: 10.3799/dqkx.2014.151
    Citation: Lin Linlin, Guo Huirong, Hao Xuan, Huang Yiqi, 2014. Determination of Diffusion Coefficients of Ethane in Water at High Pressure and Temperature with In-Situ Raman Spectroscopy. Earth Science, 39(11): 1584-1592. doi: 10.3799/dqkx.2014.151

    激光拉曼原位观测储层温度压力条件下乙烷在纯水中的扩散系数

    doi: 10.3799/dqkx.2014.151
    基金项目: 

    国家自然科学基金项目 41102154

    国家自然科学基金项目 41176047

    详细信息
      作者简介:

      蔺林林(1989-), 女, 在读硕士, E-mail: linll@2012.cug.edu.cn

      通讯作者:

      郭会荣, E-mail: hrguo@cug.edu.cn

    • 中图分类号: TE122

    Determination of Diffusion Coefficients of Ethane in Water at High Pressure and Temperature with In-Situ Raman Spectroscopy

    • 摘要: 乙烷和甲烷是深部天然气藏中的重要组成部分, 精确测量其扩散系数对于正确理解深部页岩储层中的烃类气体的分布运移及其分异具有重要意义.目前乙烷在水中的扩散系数数据局限在低压和283~333K温度范围内, 缺少天然气储层高温高压条件下的数据.本研究利用显微激光拉曼光谱, 在高压透明毛细管中原位观测了20MPa下273~393K温度范围内乙烷在纯水中的扩散, 测定了各温度下的扩散系数, 并用Speedy-Angell指数方程拟合出乙烷扩散系数D(乙烷)(m2/s)与温度T(K)之间的关系式: D(C2H6)=D0[(T/Ts)-1]γ, 式中: D0=13.8055×10-9m2/s, Ts=237.4K, γ=1.7397.相同温度压力条件下, 测得的乙烷的扩散系数小于甲烷的扩散系数.据此计算了2种气体通过低渗透盖层的扩散量的差异, 发现甲烷和乙烷溶解扩散的分异程度随盖层厚度、扩散时间而显著变化.

       

    • 图  1  高压广阔温度下乙烷在纯水溶液中的扩散观测实验装置

      实验中所需阀门(阴影部分)均为HIP耐高压三通阀门,右上图为采集到的纯水和乙烷的拉曼光谱

      Fig.  1.  A schematic diagram of system for study of diffusion of ethane in pure water at wide temperature and high-pressure

      图  2  高压毛细管中乙烷由气液界面向水柱末端扩散示意

      I.气液界面;F.水柱末端;A~E.拉曼光谱采集位置;L.扩散路径总长

      Fig.  2.  A schematic diagram of diffusion of ethane from the interface to the end of water in the high-pressure optical cell

      图  3  20MPa,25℃时B点处乙烷浓度随时间变化光谱

      3400-1cm附近为水的拉曼峰;2900-1cm附近为乙烷的拉曼峰

      Fig.  3.  Time-dependent Raman spectra of ethane collected at the spot of B, at different time after the water was pressurized by ethane to 20MPa at 298K

      图  4  20MPa不同温度下各测点上峰强度比实测值与计算值随时间的变化

      圆圈代表A点(距离气液界面20μm),乘号代表管尾附近的E点,菱形、四边形、三角形分别代表B、C、D三点.虚线代表A点处峰强度比的平均值,点线代表通过最小二乘法拟合得到的B点处的峰强度比,实线代表C、D、E三点处通过扩散系数计算结果得到的拟合曲线

      Fig.  4.  Measured values and calculated values of Raman peak intensity ratio HR(C2H6/H2O), as a function of time after water was pressurized by ethane at different temperatures at specific pressure of 20MPa

      图  5  本文实验所得扩散系数与前人实验或计算所得扩散系数随温度变化的对比

      a.温度范围270~400K;b.温度范围270~335K;乘号、四边形、菱形、三角形为实验数据;点线、虚线为模型计算数据

      Fig.  5.  Comparison of our results with previously measured or calculated data on the diffusion coefficients of ethane in water

      图  6  乙烷在纯水中扩散系数的对数与温度倒数的函数关系

      圆圈代表的数据为本研究测定的扩散系数;虚线是根据实验数据利用VTF方程进行拟合得到;实线是由Power-Law方程拟合实验数据得到

      Fig.  6.  Logarithms of ethane diffusion coefficients in water as a function of reciprocal absolute temperature

      图  7  甲烷、乙烷通过盖层扩散示意

      Fig.  7.  A schematic diagram for study of diffusion of methane and ethane through the cap rocks

      图  8  甲烷、乙烷通过不同厚度盖层岩石的扩散量

      Fig.  8.  Diffusion amount of methane and ethane through cap rocks of different thickness

      图  9  不同厚度盖层岩石中乙烷、甲烷气体扩散量的比值

      Fig.  9.  Ratio of diffusion amount of methane and ethane through cap rocks of different thickness

      表  1  压力20MPa,各温度下甲烷、乙烷在纯水中的扩散系数及置信度95%时的误差

      Table  1.   Diffusion coefficients (D) of ethane and methane in pure water measured at different temperatures (T) at specific pressure (P) of 20MPa and the deviation of diffusion coefficients

      P (MPa) T (K) D(C2H6) (10-9m2·s-1) 误差(%) D(CH4) (10-9m2·s-1) 误差(%)
      20 273 0.517 14.89 0.702 9.97
      20 283 0.793 8.20
      20 298 1.230 5.69 1.640 6.10
      20 353 4.150 10.84 4.980 6.83
      20 393 6.350 8.50 8.680 7.60
      注:表中甲烷的扩散系数及其误差值引自Guo et al.(2013).
      下载: 导出CSV
    • [1] Akgerman, A., Gainer, J.L., 1972. Diffusion of Gases in Liquids. Industrial & Engineering Chemistry Fundamentals, 11(3): 373-379. doi: 10.1021/i160043a016
      [2] Akita, K., 1981. Diffusivities of Gases in Aqueous Electrolyte Solutions. Industrial & Engineering Chemistry Fundamentals, 20(1): 89-94. doi: 10.1021/i100001a017
      [3] Angell, C.A., Smith, D.L., 1982. Test of the Entropy Basis of the Vogel-Tammann-Fulcher Equation, Dielectric Relaxation of Polyalcohols near Tg. The Journal of Physical Chemistry, 86(19): 3845-3852. doi: 10.1021/j100216a028
      [4] Baird, M.H.I., Davidson, J.F., 1962. Annular Jets-Ⅱ: Gas Absorption. Chemical Engineering Science, 17(6): 473-480. doi: 10.1016/0009-2509(62)85016-7
      [5] Bethke, C.M., Lee, M.K., Park, J., 1993. Basin Modeling with Basin2. A Guide to Using Basin2, B2plot, B2video, and B2view, Hydrogeology Program. University of Illinois, Urbana.
      [6] Busch, A., Alles, S., Gensterblum, Y., et al., 2008. Carbon Dioxide Storage Potential of Shales. International Journal of Greenhouse Gas Control, 2(3): 297-308. doi: 10.1016/j.ijggc.2008.03.003
      [7] Crank, J., 1979. The Mathematics of Diffusion. Oxford University Press, Oxford. doi:10.1016/0306-4549 (77)90 072-x
      [8] Cussler, E.L., 1984. Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge, 1(2): 9. doi: 10.1002/aic.690310333
      [9] Duan, Z.H., Mao, S.D., 2006. A Thermodynamic Model for Calculating Methane Solubility, Density and Gas Phase Composition of Methane-Bearing Aqueous Fluids from 273 to 523K and from 1 to 2000bar. Geochim. Cosmochim. Acta, 70 (13): 3369-3386. doi: 10.1016/j.gca.2006.03.018
      [10] Fulcher, G.S., 1925. Analysis of Recent Measurements of the Viscosity of Glasses. Journal of the American Ceramic Society, 8(6): 339-355. doi: 10.1111/j.1151-2916.1925.tb16731.x
      [11] Frank, M.J.W., Kuipers, J.A.M., Van Swaaij, W.P.M., 1996. Diffusion Coefficients and Viscosities of CO2+H2O, CO2+CH3OH, NH3+H2O, and NH3+CH3OH Liquid Mixtures. Journal of Chemical & Engineering Data, 41(2): 297-302. doi: 10.1021/je950157k
      [12] Gubbins, K.E., Bhatia, K.K., Walker, R.D., 1966. Diffusion of Gases in Electrolytic Solutions. AIChE Journal, 12(3): 548-552. doi: 10.1002/aic.690120328
      [13] Grathwohl, P., 1998. Diffusion in Natural Porous Media: Contaminant Transport Sorption-Desorption and Dissolution Kinetics (POD). Kluwer Academic Publishers, Boston. doi:10.1007/978-1-4615-568 3-1
      [14] Guo, H.R., Chen, Y., Lu, W.J., et al., 2013. In Situ Raman Spectroscopic Study of Diffusion Coefficients of Methane in Liquid Water under High Pressure and Wide Temperatures. Fluid Phase Equilibria, 360: 274-278. doi: 10.1016/j.fluid.2013.09051
      [15] Jiang, Y.Y., Xu, Z.H., Cao, J.L., 2011. Research on the Relationship between Solute Diffusion in Porous Media and Buoyed Weight of Porous Media. Mining Research and Development, 31(5): 30-34, 53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYK201105011.htm
      [16] Katsanos, N.A., Kapolos, J., 1989. Diffusion Coefficients of Gases in Liquids and Partition Coefficients in Gas-Liquid Inter Phases by Reversed-Flow Gas Chromatography. Analytical Chemistry, 61(20): 2231-2237. doi: 10.1021/ac00195a004
      [17] Lu, W.J., Chou, I.M., Burruss, R.C., et al., 2006. In Situ Study of Mass Transfer in Aqueous Solutions under High Pressures via Raman Spectroscopy: A New Method for the Determination of Diffusion Coefficients of Methane in Water near Hydrate Formation Conditions. Applied Spectroscopy, 60(2): 122-129. doi: 10.1366/000370206776023276
      [18] Lü, Y.F., Chen, Z.M., Fu, G., 1993. A Study on the Sealing Property and the Effectiveness of Qingshankou Formation as a Gas Cap Rock in Chaochang Area, Songliao Basin. Petroleum Exploration and Development, 20(1): 55-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK199301009.htm
      [19] Nelson, J.S., Simmons, E.C., 1995. Diffusion of Methane and Ethane through the Reservoir Cap Rock: Implications for the Timing and Duration of Catagenesis. AAPG Bulletin, 79(7): 1064-1073.
      [20] Oelkers, E.H., 1991. Calculation of Diffusion Coefficients for Aqueous Organic Species at Temperatures from 0℃ to 350℃. Geochimica et Cosmochimica Acta, 55(12): 3515-3529. doi:10.1016/0016-7037 (91)90052-7
      [21] Sachs, W., 1998. The Diffusional Transport of Methane in Liquid Water: Method and Result of Experimental Investigation at Elevated Pressure. Journal of Petroleum Science and Engineering, 21(3): 153-164. doi: 10.1016/S0920-4105(98)00048-5
      [22] Speedy, R.J., Angell, C.A., 1976. Isothermal Compressibility of Supercooled Water and Evidence for a Thermodynamic Singularity at 45 ℃. The Journal of Chemical Physics, 65(3): 851-858. doi: 10.1063/1.433153
      [23] Tang, M., Chi, Y.J., 2002. Tailored Analysis of Natural Gas Composition and Related Standardization. Chemical Engineering of Oil and Gas, 31(Suppl. ): 64-70 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chemical-engineering-oil-gas_thesis/0201218469935.html
      [24] Vogel, H., 1921. The Temperature Dependence Law of the Viscosity of Fluids. Phys. Z, 22: 645-646. http://www.scienceopen.com/document/vid/03b75fbd-9a6c-4659-96aa-44724d86e47d
      [25] Witherspoon, P.A., Bonoli, L., 1969. Correlation of Diffusion Coefficients for Paraffin, Aromatic, and Cycloparaffin Hyclrocarbons in Water. Industrial & Engineering Chemistry Fundamentals, 8(3): 589-591. doi: 10.1021/i160031a038
      [26] Witherspoon, P.A., Saraf, D.N., 1965. Diffusion of Methane, Ethane, Propane, and N-Butane in Water from 25℃ to 43℃. The Journal of Physical Chemistry, 69(11): 3752-3755. doi: 10.1021/j100895a017
      [27] Wise, D.L., Houghton, G., 1966. The Diffusion Coefficients of Ten Slightly Soluble Gases in Water at 10℃ to 60℃. Chemical Engineering Science, 21(11): 999-1010. doi: 10.1016/0009-2509(66)85096-0
      [28] Zhang, Z.S., 1990. Big Gas Fields in the World. Petroleum Industry Press, Beijing, 246-272 (in Chinese).
      [29] 姜元勇, 徐曾和, 曹建立, 2011. 多孔介质中的溶质扩散与浮重关系研究. 矿业研究与开发, 31(5): 30-34, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201105011.htm
      [30] 吕延防, 陈章明, 付广, 1993. 松辽盆地朝长地区青山口组天然气盖层封闭特征及封闭有效性研究. 石油勘探与开发, 20(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199301009.htm
      [31] 唐蒙, 迟永杰, 2002. 天然气组成常规分析方法及其标准化. 石油与天然气化工, 31(增刊): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-STQG2002S1018.htm
      [32] 张子枢, 1990. 世界大气田概论. 北京: 石油工业出版社, 246-256.
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  3243
    • HTML全文浏览量:  166
    • PDF下载量:  393
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-04-03
    • 刊出日期:  2014-11-01

    目录

      /

      返回文章
      返回