Determination of Diffusion Coefficients of Ethane in Water at High Pressure and Temperature with In-Situ Raman Spectroscopy
-
摘要: 乙烷和甲烷是深部天然气藏中的重要组成部分, 精确测量其扩散系数对于正确理解深部页岩储层中的烃类气体的分布运移及其分异具有重要意义.目前乙烷在水中的扩散系数数据局限在低压和283~333K温度范围内, 缺少天然气储层高温高压条件下的数据.本研究利用显微激光拉曼光谱, 在高压透明毛细管中原位观测了20MPa下273~393K温度范围内乙烷在纯水中的扩散, 测定了各温度下的扩散系数, 并用Speedy-Angell指数方程拟合出乙烷扩散系数D(乙烷)(m2/s)与温度T(K)之间的关系式: D(C2H6)=D0[(T/Ts)-1]γ, 式中: D0=13.8055×10-9m2/s, Ts=237.4K, γ=1.7397.相同温度压力条件下, 测得的乙烷的扩散系数小于甲烷的扩散系数.据此计算了2种气体通过低渗透盖层的扩散量的差异, 发现甲烷和乙烷溶解扩散的分异程度随盖层厚度、扩散时间而显著变化.Abstract: Ethane and methane are two main components of natural gas. Accurate diffusion coefficients at high temperature for ethane and methane are the key to calculate the diffusion and fractionation of gases in deep natural gas reservoirs, especially in unfractured shale and other geological materials with low permeability. However, the diffusion coefficients for ethane at pressures and temperatures near the reservoir conditions are scarce in the literature. In this study, diffusive transfer of ethane in water at 20MPa and from 273 to 393K was observed in a high-pressure optical capillary cell via Raman spectroscopy. Diffusion coefficients were then determined by the least-square method. The relationship between diffusion coefficients [D(C2H6) in m2/s] and temperature (T in K) was derived with Speedy-Angell power-law equation as: D(C2H6)=D0[(T/Ts)-1]γ, where D0=13.8055×10-9m2/s, Ts=237.4K, γ=1.7397. The diffusion coefficients of ethane are much smaller than those of methane at the same condition. The amount of methane and ethane diffused through some thick low permeability layers are calculated and the results show that such diffusivity difference can cause a significant fractionation of methane and ethane in thick shale layer.
-
Key words:
- ethane /
- methane /
- pure water /
- diffusion coefficient /
- Raman spectroscopy /
- diffusion amount
-
图 4 20MPa不同温度下各测点上峰强度比实测值与计算值随时间的变化
圆圈代表A点(距离气液界面20μm),乘号代表管尾附近的E点,菱形、四边形、三角形分别代表B、C、D三点.虚线代表A点处峰强度比的平均值,点线代表通过最小二乘法拟合得到的B点处的峰强度比,实线代表C、D、E三点处通过扩散系数计算结果得到的拟合曲线
Fig. 4. Measured values and calculated values of Raman peak intensity ratio HR(C2H6/H2O), as a function of time after water was pressurized by ethane at different temperatures at specific pressure of 20MPa
表 1 压力20MPa,各温度下甲烷、乙烷在纯水中的扩散系数及置信度95%时的误差
Table 1. Diffusion coefficients (D) of ethane and methane in pure water measured at different temperatures (T) at specific pressure (P) of 20MPa and the deviation of diffusion coefficients
P (MPa) T (K) D(C2H6) (10-9m2·s-1) 误差(%) D(CH4) (10-9m2·s-1) 误差(%) 20 273 0.517 14.89 0.702 9.97 20 283 0.793 8.20 20 298 1.230 5.69 1.640 6.10 20 353 4.150 10.84 4.980 6.83 20 393 6.350 8.50 8.680 7.60 注:表中甲烷的扩散系数及其误差值引自 Guo et al.(2013) . -
[1] Akgerman, A., Gainer, J.L., 1972. Diffusion of Gases in Liquids. Industrial & Engineering Chemistry Fundamentals, 11(3): 373-379. doi: 10.1021/i160043a016 [2] Akita, K., 1981. Diffusivities of Gases in Aqueous Electrolyte Solutions. Industrial & Engineering Chemistry Fundamentals, 20(1): 89-94. doi: 10.1021/i100001a017 [3] Angell, C.A., Smith, D.L., 1982. Test of the Entropy Basis of the Vogel-Tammann-Fulcher Equation, Dielectric Relaxation of Polyalcohols near Tg. The Journal of Physical Chemistry, 86(19): 3845-3852. doi: 10.1021/j100216a028 [4] Baird, M.H.I., Davidson, J.F., 1962. Annular Jets-Ⅱ: Gas Absorption. Chemical Engineering Science, 17(6): 473-480. doi: 10.1016/0009-2509(62)85016-7 [5] Bethke, C.M., Lee, M.K., Park, J., 1993. Basin Modeling with Basin2. A Guide to Using Basin2, B2plot, B2video, and B2view, Hydrogeology Program. University of Illinois, Urbana. [6] Busch, A., Alles, S., Gensterblum, Y., et al., 2008. Carbon Dioxide Storage Potential of Shales. International Journal of Greenhouse Gas Control, 2(3): 297-308. doi: 10.1016/j.ijggc.2008.03.003 [7] Crank, J., 1979. The Mathematics of Diffusion. Oxford University Press, Oxford. doi:10.1016/0306-4549 (77)90 072-x [8] Cussler, E.L., 1984. Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge, 1(2): 9. doi: 10.1002/aic.690310333 [9] Duan, Z.H., Mao, S.D., 2006. A Thermodynamic Model for Calculating Methane Solubility, Density and Gas Phase Composition of Methane-Bearing Aqueous Fluids from 273 to 523K and from 1 to 2000bar. Geochim. Cosmochim. Acta, 70 (13): 3369-3386. doi: 10.1016/j.gca.2006.03.018 [10] Fulcher, G.S., 1925. Analysis of Recent Measurements of the Viscosity of Glasses. Journal of the American Ceramic Society, 8(6): 339-355. doi: 10.1111/j.1151-2916.1925.tb16731.x [11] Frank, M.J.W., Kuipers, J.A.M., Van Swaaij, W.P.M., 1996. Diffusion Coefficients and Viscosities of CO2+H2O, CO2+CH3OH, NH3+H2O, and NH3+CH3OH Liquid Mixtures. Journal of Chemical & Engineering Data, 41(2): 297-302. doi: 10.1021/je950157k [12] Gubbins, K.E., Bhatia, K.K., Walker, R.D., 1966. Diffusion of Gases in Electrolytic Solutions. AIChE Journal, 12(3): 548-552. doi: 10.1002/aic.690120328 [13] Grathwohl, P., 1998. Diffusion in Natural Porous Media: Contaminant Transport Sorption-Desorption and Dissolution Kinetics (POD). Kluwer Academic Publishers, Boston. doi:10.1007/978-1-4615-568 3-1 [14] Guo, H.R., Chen, Y., Lu, W.J., et al., 2013. In Situ Raman Spectroscopic Study of Diffusion Coefficients of Methane in Liquid Water under High Pressure and Wide Temperatures. Fluid Phase Equilibria, 360: 274-278. doi: 10.1016/j.fluid.2013.09051 [15] Jiang, Y.Y., Xu, Z.H., Cao, J.L., 2011. Research on the Relationship between Solute Diffusion in Porous Media and Buoyed Weight of Porous Media. Mining Research and Development, 31(5): 30-34, 53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYK201105011.htm [16] Katsanos, N.A., Kapolos, J., 1989. Diffusion Coefficients of Gases in Liquids and Partition Coefficients in Gas-Liquid Inter Phases by Reversed-Flow Gas Chromatography. Analytical Chemistry, 61(20): 2231-2237. doi: 10.1021/ac00195a004 [17] Lu, W.J., Chou, I.M., Burruss, R.C., et al., 2006. In Situ Study of Mass Transfer in Aqueous Solutions under High Pressures via Raman Spectroscopy: A New Method for the Determination of Diffusion Coefficients of Methane in Water near Hydrate Formation Conditions. Applied Spectroscopy, 60(2): 122-129. doi: 10.1366/000370206776023276 [18] Lü, Y.F., Chen, Z.M., Fu, G., 1993. A Study on the Sealing Property and the Effectiveness of Qingshankou Formation as a Gas Cap Rock in Chaochang Area, Songliao Basin. Petroleum Exploration and Development, 20(1): 55-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK199301009.htm [19] Nelson, J.S., Simmons, E.C., 1995. Diffusion of Methane and Ethane through the Reservoir Cap Rock: Implications for the Timing and Duration of Catagenesis. AAPG Bulletin, 79(7): 1064-1073. [20] Oelkers, E.H., 1991. Calculation of Diffusion Coefficients for Aqueous Organic Species at Temperatures from 0℃ to 350℃. Geochimica et Cosmochimica Acta, 55(12): 3515-3529. doi:10.1016/0016-7037 (91)90052-7 [21] Sachs, W., 1998. The Diffusional Transport of Methane in Liquid Water: Method and Result of Experimental Investigation at Elevated Pressure. Journal of Petroleum Science and Engineering, 21(3): 153-164. doi: 10.1016/S0920-4105(98)00048-5 [22] Speedy, R.J., Angell, C.A., 1976. Isothermal Compressibility of Supercooled Water and Evidence for a Thermodynamic Singularity at 45 ℃. The Journal of Chemical Physics, 65(3): 851-858. doi: 10.1063/1.433153 [23] Tang, M., Chi, Y.J., 2002. Tailored Analysis of Natural Gas Composition and Related Standardization. Chemical Engineering of Oil and Gas, 31(Suppl. ): 64-70 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chemical-engineering-oil-gas_thesis/0201218469935.html [24] Vogel, H., 1921. The Temperature Dependence Law of the Viscosity of Fluids. Phys. Z, 22: 645-646. http://www.scienceopen.com/document/vid/03b75fbd-9a6c-4659-96aa-44724d86e47d [25] Witherspoon, P.A., Bonoli, L., 1969. Correlation of Diffusion Coefficients for Paraffin, Aromatic, and Cycloparaffin Hyclrocarbons in Water. Industrial & Engineering Chemistry Fundamentals, 8(3): 589-591. doi: 10.1021/i160031a038 [26] Witherspoon, P.A., Saraf, D.N., 1965. Diffusion of Methane, Ethane, Propane, and N-Butane in Water from 25℃ to 43℃. The Journal of Physical Chemistry, 69(11): 3752-3755. doi: 10.1021/j100895a017 [27] Wise, D.L., Houghton, G., 1966. The Diffusion Coefficients of Ten Slightly Soluble Gases in Water at 10℃ to 60℃. Chemical Engineering Science, 21(11): 999-1010. doi: 10.1016/0009-2509(66)85096-0 [28] Zhang, Z.S., 1990. Big Gas Fields in the World. Petroleum Industry Press, Beijing, 246-272 (in Chinese). [29] 姜元勇, 徐曾和, 曹建立, 2011. 多孔介质中的溶质扩散与浮重关系研究. 矿业研究与开发, 31(5): 30-34, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201105011.htm [30] 吕延防, 陈章明, 付广, 1993. 松辽盆地朝长地区青山口组天然气盖层封闭特征及封闭有效性研究. 石油勘探与开发, 20(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199301009.htm [31] 唐蒙, 迟永杰, 2002. 天然气组成常规分析方法及其标准化. 石油与天然气化工, 31(增刊): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-STQG2002S1018.htm [32] 张子枢, 1990. 世界大气田概论. 北京: 石油工业出版社, 246-256.