• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    低渗卤水盆地提高CO2注入性的技术方法: 以江汉盆地为例

    房琦 李义连 程鹏 喻英 刘丹青 宋少宇

    房琦, 李义连, 程鹏, 喻英, 刘丹青, 宋少宇, 2014. 低渗卤水盆地提高CO2注入性的技术方法: 以江汉盆地为例. 地球科学, 39(11): 1575-1583. doi: 10.3799/dqkx.2014.150
    引用本文: 房琦, 李义连, 程鹏, 喻英, 刘丹青, 宋少宇, 2014. 低渗卤水盆地提高CO2注入性的技术方法: 以江汉盆地为例. 地球科学, 39(11): 1575-1583. doi: 10.3799/dqkx.2014.150
    Fang Qi, Li Yilian, Cheng Peng, Yu Ying, Liu Danqing, Song Shaoyu, 2014. Enhancing CO2 Injectivity in High-Salinity and Low-Permeability Aquifers: A Case Study of Jianghan Basin, China. Earth Science, 39(11): 1575-1583. doi: 10.3799/dqkx.2014.150
    Citation: Fang Qi, Li Yilian, Cheng Peng, Yu Ying, Liu Danqing, Song Shaoyu, 2014. Enhancing CO2 Injectivity in High-Salinity and Low-Permeability Aquifers: A Case Study of Jianghan Basin, China. Earth Science, 39(11): 1575-1583. doi: 10.3799/dqkx.2014.150

    低渗卤水盆地提高CO2注入性的技术方法: 以江汉盆地为例

    doi: 10.3799/dqkx.2014.150
    基金项目: 

    国土资源部公益性行业基金项目 201211063

    详细信息
      作者简介:

      房琦(1985-), 女, 博士, 主要从事CO2地质储存与资源化利用技术的研究. E-mail: frances2009@foxmail.com

      通讯作者:

      李义连, E-mail: yl.li@cug.edu.cn

    • 中图分类号: P345

    Enhancing CO2 Injectivity in High-Salinity and Low-Permeability Aquifers: A Case Study of Jianghan Basin, China

    • 摘要: 注入性是关系CO2地质储存成功与否的一个关键的技术和经济问题, 评价与提高CO2在中国陆相沉积盆地普遍存在的低渗储层中的注入能力对于碳捕集与封存技术在中国的应用与推广具有重要意义.以江汉盆地江陵凹陷为例, 通过数值模拟的方法开展高盐低渗储层CO2注入能力评估与提高方案研究.结果表明: 预注入淡水和低盐度的微咸水溶液均可不同程度地缓解注入井周围的盐沉淀问题; 预注入CO2饱和溶液或稀盐酸溶液, 可显著提高注入井周围的孔渗值, 提高CO2注入性, 但由于储层本身的低渗性, 迁移距离有限, 短时间内较难实现CO2注入速率的大幅度提高.采取水力压裂措施可显著提高低渗储层中CO2的注入性, 其提升能力取决于压裂裂缝的半长度以及压裂程度.对于单个垂直井, 通过水力压裂对储层加以改造, 并采取多层注入的方式, 在低渗储层中实现数十万吨的年注入量是可能的.

       

    • 图  1  江汉盆地地理位置、构造单元及柱状图(李国玉和吕鸣岗,2002)

      Fig.  1.  Location, geological units and stratum histogram of Jianghan basin

      图  2  鄂深4井(ES-4)深部砂岩孔渗物性(a)和矿物组成(b)随埋深的变化

      Fig.  2.  Variation in porosity, permeability, shaliness (a) and mineral composition (b) of sandstone with depth from ES-4 drilling

      图  3  网格剖分示意

      Fig.  3.  Schematic diagram of grid generation

      图  4  水力压裂垂直裂缝网格离散图

      加粗线代表裂缝;灰色区代表压裂影响带

      Fig.  4.  Grid discretization of vertical fracture

      图  5  2D与3D模型CO2注入速率结果对比

      Fig.  5.  Comparison of CO2 injection rate(QCO2) based on 2D and 3D model

      图  6  预注入10d淡水、1%盐度微咸水和5%盐度咸水后直接注入CO2注入速率随时间的演化

      Fig.  6.  Time evolution of CO2 injection rate after 10d pre-injection of freshwater, 1% salinity and 5% salinity saline water (no pressure recovery)

      图  7  预注入10d淡水、1%盐度和5%盐度咸水压力恢复20d后再注入CO2注入速率随时间的演化

      Fig.  7.  Time evolution of CO2 injection rate after 10d pre-injection of freshwater, 1% salinity and 5% salinity saline water (after pressure recovery)

      图  8  预注入30d CO2饱和溶液(a)和1mol/L盐酸溶液(b)对井孔周围孔隙度和渗透率的改造

      Fig.  8.  Improvement of porosity and permeability after 30d pre-injection of CO2 saturated solution (a) and 1mol/L HCl solution (b)

      图  9  预注入30d CO2饱和溶液(a)和1mol/L盐酸溶液(b)井孔周围石膏和方解石的体积变化

      Fig.  9.  Volume change of anhydrite and calcite after 30d pre-injection of CO2 saturated solution (a) and 1mol/L HCl solution (b)

      图  10  预注入30d CO2饱和溶液和稀盐酸溶液后直接注入CO2注入速率随时间的演化

      Fig.  10.  Time evolution of CO2 injection rate after 30d pre-injection of CO2-saturated solution and 1mol/L HCl solution (no pressure recovery)

      图  11  预注入30d CO2饱和溶液和稀盐酸溶液后恢复压力30d后再注入CO2注入速率随时间的演化

      Fig.  11.  Time evolution of CO2 injection rate after 30d pre-injection of CO2-saturated solution and 1mol/L HCl solution (after pressure recovery)

      图  12  裂缝半长度50m、100m、200m、300m、500m CO2注入速率随时间的演化

      Fig.  12.  Time evolution of CO2 injection rate under fracture half-length of 50m, 100m, 200m, 300m and 500m

      图  13  裂缝数目对CO2注入速率的影响

      Fig.  13.  Effect offracture number on CO2 injection rate

      图  14  压裂程度对CO2注入速率的影响

      Fig.  14.  Effect of fracture permeability on CO2 injection rate

      表  1  直接注入、预注入淡水或微咸水、CO2饱和溶液或稀盐酸以及水力压裂具体实施方案

      Table  1.   Schemes of direct injection, pre-injection of freshwater or brackish water, pre-injection of CO2-saturated solution or diluted HCl solution and hydraulic fracturing

      方案代号 方案内容
      基础方案:直接注入CO2模型的影响
      0-1-a、0-1-b 3D模型不考虑盐沉淀的影响(0-1-a)、考虑盐沉淀的影响(0-1-b)
      0-2-a、0-2-b 2D模型不考虑盐沉淀的影响(0-2-a)、考虑盐沉淀的影响(0-2-b)
      提升方案1:预注入淡水、微咸水溶液(3D模型)
      1-1-a、1-1-b、1-1-c 预注入10d淡水、1%盐度微咸水、5%盐度弱咸水后直接注入CO2
      1-2-a、1-2-b、1-2-c 预注入10d淡水、1%盐度微咸水、5%盐度弱咸水后等待压力恢复20d后再注入CO2
      提升方案2:预注入CO2饱和溶液、稀盐酸溶液(2D模型)
      2-1-a、2-1-b 预注入30d CO2饱和溶液、1mol/L稀盐酸溶液后直接注入CO2
      2-2-a、2-2-b 预注入30d CO2饱和溶液、1mol/L稀盐酸溶液后等待压力恢复30d后再注入CO2
      提升方案3:水力压裂(3D模型)
      3-1-a至3-1-e 压裂长度的影响:X方向压出一条半长度50m、100m、200m、300m、500m的垂直裂缝
      3-1-f 压裂数目的影响:X方向和Y方向各压裂出一条半长度为100m的垂直裂缝
      3-1-g、3-1-h 压裂程度的影响:以半长度100m裂缝为例,将裂缝渗透率提高至2倍和5倍,考察压裂程度的影响
      下载: 导出CSV

      表  2  基础方案中水文地质参数和热力学参数设置

      Table  2.   Hydrogeological and thermo dynamical properties used in the base-case simulations

      岩性 孔隙度(%) 渗透率(10-15 m2) 岩石颗粒密度(g/cm3) 岩石热传导率(W/m℃) 岩石颗粒特焓(J/kg℃) 压缩系数(Pa-1) 盐度(%) 残余水饱和度Slr 残余气饱和度Sgr Van Genuchten参数λ 压强系数(MPa)
      砂岩 12 3.81 2.6 2.51 920 4.5E-10 20 0.30 0.05 0.46 0.02
      下载: 导出CSV

      表  3  模型中原生矿物体积分数以及可能的次生矿物

      Table  3.   Initial mineral volume fractions and possible secondary mineral phases used in the simulations

      原生矿物 化学组成 体积分数 次生矿物 化学组成 体积分数
      石英 SiO2 0.70 高岭石 Al2Si2O5(OH) 0
      方解石 CaCO3 0.20 钙蒙脱石 Ca0.145Mg0.26Al1.77Si3.97O10(OH)2 0
      钠长石 NaAlSi3O8 0.01 钠蒙脱石 Na0.290Mg0.26Al1.77Si3.97O10(OH)2 0
      石膏 CaSO4 0.03 铁白云石 CaMg0.3Fe0.7(CO3)2 0
      伊利石 K0.6Mg0.25Al1.8(Al0.5Si3.5O10)(OH)2 0.03 片钠铝石 NaAlCO3(OH)2 0
      绿泥石 Mg2.5Fe2.5Al2Si3O10(OH)8 0.01 白云石 CaMg(CO3)2 0
      赤铁矿 Fe2O3 0.01 菱镁矿 MgCO3 0
      钾长石 KAlSi3O8 0.01 菱铁矿 FeCO3 0
      黄铁矿 FeS2 0
      下载: 导出CSV

      表  4  地层水初始溶解组分浓度

      Table  4.   Initial concentrations of the formation water at reservoir conditions of 90℃ and 2.25×107 Pa

      成分 浓度(mol/kg H2O) 成分 浓度(mol/kg H2O) 成分 浓度(mol/kg H2O)
      pH 6.9 K 3.439×10-2 S 6.273×10-2
      Ca 6.350×10-2 Fe 1.477×10-6 Al 1.768×10-8
      Mg 4.567×10-4 SiO2(aq) 1.016×10-3 Cl 4.000
      Na 4.002 C 7.013×10-3 O2(aq) 1.447×10-5
      下载: 导出CSV
    • [1] Alkan, H., Cinar, Y., lker, E.B., 2010. Impact of Capillary Pressure, Salinity and In-Situ Conditions on CO2 Injection into Saline Aquifers. Transport in Porous Media, 84(3): 799-819. doi: 10.1007/s1124-010-9541-8
      [2] Bacci, G., Korre, A., Durucan, S., 2011. An Experimental and Numerical Investigation into the Impact of Dissolution/Precipitation Mechanisms on CO2 Injectivity in the Wellbore and Far Field Regions. International Journal of Greenhouse Gas Control, 5(3): 579-588. doi: 10.1016/j.ijggc.2011.05.007
      [3] Benson, S.M., Cole, D.R., 2008. CO2 Sequestration in Deep Sedimentary Formations. Elements, 4(5): 325-331. doi: 10.2113/gselements.4.5.325
      [4] Gale, J., 2004. Geological Storage of CO2: What Do We Know, Where Are the Gaps, and What More Needs to Be Done. Energy, 29(9-10): 1329-1338. doi: 10.1016/j.energy.2004.03.068
      [5] Giorgis, T., Carpita, M., Battistelli, A., 2007.2D Modeling of Salt Precipitation during the Injection of Dry CO2 in a Depleted Gas Reservoir. Energy Conversion and Management, 48(6): 1816-1826. doi: 10.1016/j.enconman.2007.01.012
      [6] Holloway, S., 2005. Underground Sequestration of Carbon Dioxide—A Viable Greenhouse Gas Mitigation Option. Energy, 30: 2318-2333. doi: 10.1016/j.energy.2003.10.023
      [7] IPCC (Intergovernmental Panel on Climate Change), 2005. Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, New York.
      [8] Kim, K.Y., Han, W.S., Oh, J., et al., 2012. Characteristics of Salt-Precipitation and the Associated Pressure Buildup during CO2 Storage in Saline Aquifers. Transport in Porous Media, 92: 397-418. doi: 10.1017/s11242-011-9909-4
      [9] Li, G.Y., Lü, M.G., 2002. Atlas of China's Petroliferous Basins. Petroleum Industry Press, Beijing (in Chinese).
      [10] Li, Y.L., Fang, Q., Ke, Y.B., et al., 2012. Effect of High Salinity on CO2 Geological Storage: A Case Study of Qianjiang Depression in Jianghan Basin. Earth Science—Journal of China University of Geosciences, 37(2): 283-288 (in Chinese with English abstract). doi: 10.3799/dqkx.2012.030
      [11] Palandri, J.L., Kharaka, Y.K., 2004. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling. Menlo Park, California, 1068: 64.
      [12] Pruess, K., Müller, N., 2009. Formation Dry-Out from CO2 Injection into Saline Aquifers: 1. Effects of Solids Precipitation and Their Mitigation, Water Resources Research, 45(3): W03402. doi: 10.1029/2008WR007101
      [13] Pruess, K., Oldenburg, C., Moridis, G., 1999. TOUGH2 User's Guide. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley.
      [14] Verma, A., Pruess, K., 1988. Thermohydrological Conditions and Silica Redistribution near High-Level Nuclear Wastes Emplaced in Saturated Geological Formations. Journal of Geophysical Research, 93(B2): 1159-1173. doi: 10.1029/JB093iB02p01159
      [15] Wang, Y.X., Mao, X.M., DePaolo, D., 2011. Nanoscale Fluid-Rock Interaction in CO2 Geological Storage. Earth Science—Journal of China University of Geosciences, 36(1): 163-171 (in Chinese with English abstract). doi: 10.3799/dqkx.2011.017
      [16] Xu, T., Sonnenthal, E., Spycher, N., et al., 2008. TOUGHREACT User's Guide: A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley.
      [17] Zhang, K., Wu, Y.S., Pruess, K., 2008. User's Guide for TOUGH2-MP—A Massively Parallel Version of the TOUGH2 Code. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley.
      [18] Zhang, W., Li, Y., Omambia, A., 2010. Reactive Transport Modeling of Effects of Convective Mixing on Long-Term CO2 Geological Storage in Deep Saline Formations. International Journal of Greenhouse Gas Control, 5(2): 241-256. doi: 10.1016/j.ijggc.2010.10.007
      [19] Zhang, W., Li, Y., Xu, T., et al., 2009. Long-Term Variations of CO2 Trapped in Different Mechanisms in Deep Saline Formations: A Case Study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 3(2): 161-180. doi: 10.1016/j.ijggc.2008.07.007
      [20] 李国玉, 吕鸣岗, 2002. 中国含油气盆地图集. 北京: 石油工业出版社.
      [21] 李义连, 房琦, 柯怡兵, 等, 2012. 高盐度卤水对CO2地质封存的影响: 以江汉盆地潜江凹陷为例. 地球科学——中国地质大学学报, 37(2): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202013.htm
      [22] 王焰新, 毛绪美, DePaolo, D., 2011. CO2地质储存的纳米尺度流体-岩石相互作用研究. 地球科学——中国地质大学学报, 36(1): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101018.htm
    • 加载中
    图(14) / 表(4)
    计量
    • 文章访问数:  3124
    • HTML全文浏览量:  92
    • PDF下载量:  537
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-03-02
    • 刊出日期:  2014-11-01

    目录

      /

      返回文章
      返回