• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黄河三角洲地下水动态变化及其与地面沉降的关系

    刘勇 李培英 丰爱平 黄海军

    刘勇, 李培英, 丰爱平, 黄海军, 2014. 黄河三角洲地下水动态变化及其与地面沉降的关系. 地球科学, 39(11): 1555-1565. doi: 10.3799/dqkx.2014.148
    引用本文: 刘勇, 李培英, 丰爱平, 黄海军, 2014. 黄河三角洲地下水动态变化及其与地面沉降的关系. 地球科学, 39(11): 1555-1565. doi: 10.3799/dqkx.2014.148
    Liu Yong, Li Peiying, Feng Aiping, Huang Haijun, 2014. Groundwater Dynamic Evolutions and Relationship between Groundwater Level and Land Subsidence in the Yellow River Delta. Earth Science, 39(11): 1555-1565. doi: 10.3799/dqkx.2014.148
    Citation: Liu Yong, Li Peiying, Feng Aiping, Huang Haijun, 2014. Groundwater Dynamic Evolutions and Relationship between Groundwater Level and Land Subsidence in the Yellow River Delta. Earth Science, 39(11): 1555-1565. doi: 10.3799/dqkx.2014.148

    黄河三角洲地下水动态变化及其与地面沉降的关系

    doi: 10.3799/dqkx.2014.148
    基金项目: 

    中央级公益性科研院所基本科研业务费专项资金项目 GY0214G17

    国家自然科学基金项目 40676037

    海洋公益专项"我国典型海岛地质灾害监测及预警示范研究" 201005010

    详细信息
      作者简介:

      刘勇(1981-), 男, 博士后, 主要从事海岸带环境地质灾害机理及RS和GIS在海岛海岸带资源环境中的应用研究.E-mail: liuyong@fio.org.cn

      通讯作者:

      丰爱平, E-mail: fengap@fio.org.cn

    • 中图分类号: P736.5

    Groundwater Dynamic Evolutions and Relationship between Groundwater Level and Land Subsidence in the Yellow River Delta

    • 摘要: 为了分析黄河三角洲地下水动态及其与地面沉降的关系, 利用多年地下水和地面沉降监测数据, 发现黄河三角洲广饶县和东营区的地下水动态变化剧烈且地面沉降严重, 含水层多处于超采状态, 浅、深层地下水降落漏斗先后出现.深层地下水降落漏斗中心水位下降速度达2~3m/a.近年来, 东营和广饶地面沉降漏斗中心沉降量和速率分别为155.1mm、28.2mm/a和356.0mm、64.7mm/a.借助GIS技术及数理统计法, 发现深层地下水降落漏斗与沉降漏斗空间耦合良好, 深层地下水位与地面高程呈线性正相关, 相关系数为0.92, 深层地下水过度开采已成为影响沉降的最根本因素.井灌区第三粘性压缩层成为地面沉降主要贡献层, 且深层地下水降落漏斗中心的地下水位已低于第三承压含水层临界水位, 沉降趋于严重.

       

    • 图  1  黄河三角洲地形和水文地质分区

      Fig.  1.  Topographic map and hydrogeology partition of the Yellow River Delta

      图  2  黄河三角洲不同区域降水量动态变化

      a.年际降水量变化;b.月均降水量变化

      Fig.  2.  Trends of precipitation in different district of the Yellow River Delta

      图  3  黄河三角洲典型地区浅、深层地下水开采量及开采程度

      a.利津县浅层地下水;b东营区深层地下水;c.广饶县浅、深层地下水

      Fig.  3.  The extraction volumes and exploitation degree of both shallow and deep groundwater in the typical areas of the Yellow River Delta

      图  4  黄泛区浅层地下水位动态及2006—2010年利津县盐窝镇北坝村地下水位监测曲线

      a.黄泛区2010年内浅层地下水位动态;b.黄泛区2000—2010年际浅层地下水动态;c.2006—2010年利津县盐窝镇北坝村地下水位监测曲线

      Fig.  4.  The dynamic of shallow groundwater in a year (a) and in different areas (b) of the Yellow River flooding area, the shallow groundwater level monitoring curve in Beiba Village, Yanwo Town, Lijin County between 2006 and 2010 (c)

      图  5  山前平原区浅层地下水位动态及2006—2010年广饶县大王镇陈官村地下水位监测曲线

      a.山前平原区浅层地下水位动态;b.广饶县大王镇浅层地下水位年内动态

      Fig.  5.  The dynamics of shallow groundwater level in piedmont plain (a) and the shallow groundwater level monitoring curve in Chenguan Village, Dawang Town, Guangrao County between 2006 and 2010 (b)

      图  6  广饶县井灌区浅层地下水降落漏斗演变分布与水位动态

      a.广饶县井灌区浅层水降落漏斗面积变化;b.广饶县井灌区浅层地下水降落漏斗中心水位动态

      Fig.  6.  The evolution of shallow groundwater depression cones in the well irrigation area of Guangrao County (a) and the distribution of shallow groundwater depression cones and water level dynamics in the cone centers (b)

      图  7  黄河三角洲南部深层地下水降落漏斗中心深层地下水位动态及2006—2010年稻庄镇深层地下水位监测曲线

      Fig.  7.  The dynamics of deep groundwater level in cone centers in south of the Yellow River Delta (a) and the deep groundwater level monitoring curve in Daozhuang Town of Guangrao County between 2006 and 2010 (b)

      图  9  黄河三角洲南部深层地下水动态与沉降空间分析

      Fig.  9.  Spatial analysis of deep groundwater depression cones and land subsidence in south of the Yellow River Delta

      图  8  黄河三角洲典型沉降区沉降速率(a)及动态演化(b)

      Fig.  8.  The subsidence rate (a) and dynamic evolution (b) of the typical subsidence area in the Yellow River Delta

      表  1  地下水开采程度评价标准

      Table  1.   The evaluation standard of exploitation degree of groundwater

      P <80% 80%~120% 120%~150% >150%
      开采程度 有潜力 基本平衡 超采 严重超采
      下载: 导出CSV
    • [1] Bie, J., Huang, H.J., Fan, H., et al., 2006. Ground Subsidence of the Modern Yellow River Delta and Its Causes. Marine Geology & Quaternary Geology, 26(4): 29-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200604005.htm
      [2] Carbognin, L., Teatini, P., Tosi, L., 2004. Eustacy and Land Subsidence in the Venice Lagoon at the Beginning of the New Millennium. Journal of Marine Systems, 51(1-4): 345-353. doi: 10.1016/j.jmarsys.2004.05.021
      [3] Chai, J. C, Shen, S.L., Zhu, H.H., et al., 2004. Land Subsidence Due to Groundwater Drawdown in Shanghai. Géotechnique, 54(2): 143-147. doi: 10.1680/geot.2004.54.2.143
      [4] Hu, H.M., Shen, Y.J., 1991. The Developing of Ground Subsidence in Main Cities of North China. The Chinese Journal of Geological Hazard and Control, 2(4): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH199104000.htm
      [5] Li, G.X., Zhuang, K.L., Jiang, Y.C., 2000. Engineering Instability of the Deposition Bodies in the Yellow River Delta. Marine Geology & Quaternary Geology, 20(2): 21-26 (in Chinese with English abstract). http://www.researchgate.net/publication/286040429_Engineering_instability_of_the_deposition_bodies_in_the_Yellow_River_delta
      [6] Liu, G.Y., 2001. Exploitation and Environmental Problems of Deep Groundwater in Lubei Plain. Hydrogeology and Engineering Geology, (3): 43-45 (in Chinese with English abstract).
      [7] Liu, Q.Y., Pan, S.B., Wu, X.F., et al., 2006. Technology of Groundwater Recharge against Saltwater Intrusion: A Case Study on Guangrao County, Shandong Province. Journal of Natural Disasters, 15(3): 96-100 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH200603017.htm
      [8] Liu, Y., Huang, H.J., 2013. Characterization and Mechanism of Regional Land Subsidence in the Yellow River Delta, China. Natural Hazards, 68(2): 687-709. doi: 10.1007/s11069-013-0648-4
      [9] Niu, X.J., 1998. Characteristics of Strata Consolidation and Land Subsidence Controlling by Critical Water Level. The Chinese Journal of Geological Hazard and Control, 9(2): 68-74 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=ZGDH802.011&dbcode=CJFD&year=1998&dflag=pdfdown
      [10] Ovando-Shelley, E., Ossa, A., Romo, M.P., 2007. The Sinking of Mexico City: Its Effects on Soil Properties and Seismic Response. Soil Dynamics and Earthquake Engineering, 27(4): 333-343. doi: 10.1016/j.soildyn.2006.08.005
      [11] Qin, W.Y., Zhuang, X.G., Huang, H.J., 2008. Mechanism Analysis of Land Surface Subsidence in the Modern Yellow River Delta. Marine Sciences, 32(8): 38-43 (in Chinese with English abstract).
      [12] Ren, M.E., 1993. Relativer Sea Level Rise in Huanghe, Changjiang and Zhujiang (Yellow, Yangtze and Pearl River) Delta over the Last 30 Years and Predication for the Next 40 Years (2030). Acta Geographica Sinica, 48(5): 385-393 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB199305000.htm
      [13] Shen, S.L., Xu, Y.S., 2011. Numerical Evaluation of Land Subsidence Induced by Groundwater Pumping in Shanghai. Canadian Geotechnical Journal, 48(9): 1378-1392.9(2): 68-74. doi: 10.1139/T11-049
      [14] Sun, H., Grandstaff, D., Shagam, R., 1999. Land Subsidence Due to Groundwater Withdrawal: Potential Damage of Subsidence and Sea Level Rise in Southern New Jersey, USA. Environmental Geology, 37(4): 290-296. doi: 10.1007/s002540050386
      [15] Teatini, P., Ferronato, M., Gambolati, G., et al., 2005. A Century of Land Subsidence in Ravenna, Italy. Environmental Geology, 47(6): 831-846. doi: 10.1007/s00254-004-1215-9
      [16] Wang, R.B., Sun, D.P., Geng, S.C., et al., 1994. Dynamics of Ground Subsidence and Its Effects on Geographical Environment in the Tianjin Area. Acta Geographica Sinica, 49(4): 317-323 (in Chinese with English abstract).
      [17] Wei, Z.X., 2002. Stress-Strain Analysis of the Fourth Confined Aquifer in Shanghai. Hydrogeology and Engineering Geology, (1): 1-4 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SWDG200201000.htm
      [18] Xue, Y.Q., Zhang, Y., Ye, S.J., et al., 2005. Land Subsidence in China. Environmental Geology, 48(6): 713-720. doi: 10.1007/s00254-005-0010-6
      [19] Yamanaka, T., Mikita, M., Lorphensri, O., et al., 2011. Anthropogenic Changes in a Confined Groundwater Flow System in the Bangkok Basin, Thailand, Part Ⅱ: How Much Water Has Been Renewed?Hydrological Processes, 25(17): 2734-2741. doi: 10.1002/hyp.8014
      [20] Yi, L.X., Zhang, F., Xu, H., et al., 2011. Land Subsidence in Tianjin, China. Environmental Earth Sciences, 62(6): 1151-1161. doi: 10.1007/s12665-010-0604-5
      [21] Yu, Z.T., 2006. Investigation and Study of Salt Water Intrusion on the South Coast Plain of Laizhou Bay (Dissertation). Ocean University of China, Qingdao (in Chinese with English abstract).
      [22] Zhang, Y., Xue, Y.Q., Li, Q.F., 2003. Current Prominent Subsidence Layer and Its Deformation Properties in Shanghai. Hydrogeology and Engineering Geology, (5): 6-11 (in Chinese with English abstract). http://www.researchgate.net/publication/285502421_Current_prominent_subsidence_layer_and_its_deformation_properties_in_Shanghai
      [23] 别君, 黄海军, 樊辉, 等, 2006. 现代黄河三角洲地面沉降及其原因分析. 海洋地质与第四纪地质, 26(4): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200604005.htm
      [24] 胡惠民, 沈永坚, 1991. 华北地区及其主要城市地面沉降的演变和发展. 中国地质灾害与防治学报, 2(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH199104000.htm
      [25] 李广雪, 庄克琳, 姜玉池, 2000. 黄河三角洲沉积体的工程不稳定性. 海洋地质与第四纪地质, 20(2): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002003.htm
      [26] 刘桂仪, 2001. 鲁北平原深层地下水开发与环境问题. 水文地质工程地质, (3): 43-45. doi: 10.3969/j.issn.1000-3665.2001.03.012
      [27] 刘青勇, 潘世兵, 武晓峰, 等, 2006. 地下水回灌补源防治咸水入侵技术研究——以山东省广饶县为例. 自然灾害学报, 15(3): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200603017.htm
      [28] 牛修俊, 1998. 地层的固结特性与地面沉降临界水位控沉. 中国地质灾害与防治学报, 9(2): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH802.011.htm
      [29] 秦伟颖, 庄新国, 黄海军, 2008. 现代黄河三角洲地区地面沉降的机理分析. 海洋科学, 32(8): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX200808009.htm
      [30] 任美锷, 1993. 黄河长江珠江三角洲近30年海平面上升趋势及2030年上升量预测. 地理学报, 48(5): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB199305000.htm
      [31] 王若柏, 孙东平, 耿世昌, 等, 1994. 天津地区地面沉降及其对地理环境的影响. 地理学报, 49(4): 317-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB404.003.htm
      [32] 魏子新, 2002. 上海市第四承压含水层应力-应变分析. 水文地质工程地质, (1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200201000.htm
      [33] 于治通, 2006. 莱洲湾南岸淄河下游咸水入侵调查与研究(硕士学位论文). 青岛: 中国海洋大学.
      [34] 张云, 薛禹群, 李勤奋, 2003. 上海现阶段主要沉降层及其变形特征分析. 水文地质工程地质, (5): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200305002.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  3220
    • HTML全文浏览量:  153
    • PDF下载量:  410
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-02-14
    • 刊出日期:  2014-11-01

    目录

      /

      返回文章
      返回