Groundwater Dynamic Evolutions and Relationship between Groundwater Level and Land Subsidence in the Yellow River Delta
-
摘要: 为了分析黄河三角洲地下水动态及其与地面沉降的关系, 利用多年地下水和地面沉降监测数据, 发现黄河三角洲广饶县和东营区的地下水动态变化剧烈且地面沉降严重, 含水层多处于超采状态, 浅、深层地下水降落漏斗先后出现.深层地下水降落漏斗中心水位下降速度达2~3m/a.近年来, 东营和广饶地面沉降漏斗中心沉降量和速率分别为155.1mm、28.2mm/a和356.0mm、64.7mm/a.借助GIS技术及数理统计法, 发现深层地下水降落漏斗与沉降漏斗空间耦合良好, 深层地下水位与地面高程呈线性正相关, 相关系数为0.92, 深层地下水过度开采已成为影响沉降的最根本因素.井灌区第三粘性压缩层成为地面沉降主要贡献层, 且深层地下水降落漏斗中心的地下水位已低于第三承压含水层临界水位, 沉降趋于严重.Abstract: To analyze the groundwater dynamic and the relationship between groundwater level and land subsidence in the Yellow River Delta, drastic groundwater level depression and serious land subsidence have been researched by monitoring data of groundwater level and land subsidence for years. Persistent groundwater overexploitation has resulted in groundwater depression cones in both shallow and deep aquifers successively. The deep groundwater level decline rate of cone centers is 2 to 3m/a. In recent years, Dongying and Guangrao exhibit a typical subsidence area with cumulative settlement and subsidence rates of 155.1mm, 28.2mm/a and 356.0mm, 64.7mm/a, respectively. Using GIS and mathematical statistics, it is found that configuration of the subsidence cone is basically identical to the shape of the deep groundwater depression cone, and there exists a significant linear positive correlation between deep groundwater level and elevation in deep groundwater depression cone, with the correlation coefficient of 0.92. The deep groundwater overexploitation has been the most essential factor to land subsidence. The third compressed layer has become the main contribution layer of land subsidence in well-irrigated area. Because water level at centers of deep groundwater depression cone has fallen below critical water level of the third confined aquifer, land subsidence is becoming more and more serious.
-
图 4 黄泛区浅层地下水位动态及2006—2010年利津县盐窝镇北坝村地下水位监测曲线
a.黄泛区2010年内浅层地下水位动态;b.黄泛区2000—2010年际浅层地下水动态;c.2006—2010年利津县盐窝镇北坝村地下水位监测曲线
Fig. 4. The dynamic of shallow groundwater in a year (a) and in different areas (b) of the Yellow River flooding area, the shallow groundwater level monitoring curve in Beiba Village, Yanwo Town, Lijin County between 2006 and 2010 (c)
表 1 地下水开采程度评价标准
Table 1. The evaluation standard of exploitation degree of groundwater
P值 <80% 80%~120% 120%~150% >150% 开采程度 有潜力 基本平衡 超采 严重超采 -
[1] Bie, J., Huang, H.J., Fan, H., et al., 2006. Ground Subsidence of the Modern Yellow River Delta and Its Causes. Marine Geology & Quaternary Geology, 26(4): 29-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200604005.htm [2] Carbognin, L., Teatini, P., Tosi, L., 2004. Eustacy and Land Subsidence in the Venice Lagoon at the Beginning of the New Millennium. Journal of Marine Systems, 51(1-4): 345-353. doi: 10.1016/j.jmarsys.2004.05.021 [3] Chai, J. C, Shen, S.L., Zhu, H.H., et al., 2004. Land Subsidence Due to Groundwater Drawdown in Shanghai. Géotechnique, 54(2): 143-147. doi: 10.1680/geot.2004.54.2.143 [4] Hu, H.M., Shen, Y.J., 1991. The Developing of Ground Subsidence in Main Cities of North China. The Chinese Journal of Geological Hazard and Control, 2(4): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH199104000.htm [5] Li, G.X., Zhuang, K.L., Jiang, Y.C., 2000. Engineering Instability of the Deposition Bodies in the Yellow River Delta. Marine Geology & Quaternary Geology, 20(2): 21-26 (in Chinese with English abstract). http://www.researchgate.net/publication/286040429_Engineering_instability_of_the_deposition_bodies_in_the_Yellow_River_delta [6] Liu, G.Y., 2001. Exploitation and Environmental Problems of Deep Groundwater in Lubei Plain. Hydrogeology and Engineering Geology, (3): 43-45 (in Chinese with English abstract). [7] Liu, Q.Y., Pan, S.B., Wu, X.F., et al., 2006. Technology of Groundwater Recharge against Saltwater Intrusion: A Case Study on Guangrao County, Shandong Province. Journal of Natural Disasters, 15(3): 96-100 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH200603017.htm [8] Liu, Y., Huang, H.J., 2013. Characterization and Mechanism of Regional Land Subsidence in the Yellow River Delta, China. Natural Hazards, 68(2): 687-709. doi: 10.1007/s11069-013-0648-4 [9] Niu, X.J., 1998. Characteristics of Strata Consolidation and Land Subsidence Controlling by Critical Water Level. The Chinese Journal of Geological Hazard and Control, 9(2): 68-74 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=ZGDH802.011&dbcode=CJFD&year=1998&dflag=pdfdown [10] Ovando-Shelley, E., Ossa, A., Romo, M.P., 2007. The Sinking of Mexico City: Its Effects on Soil Properties and Seismic Response. Soil Dynamics and Earthquake Engineering, 27(4): 333-343. doi: 10.1016/j.soildyn.2006.08.005 [11] Qin, W.Y., Zhuang, X.G., Huang, H.J., 2008. Mechanism Analysis of Land Surface Subsidence in the Modern Yellow River Delta. Marine Sciences, 32(8): 38-43 (in Chinese with English abstract). [12] Ren, M.E., 1993. Relativer Sea Level Rise in Huanghe, Changjiang and Zhujiang (Yellow, Yangtze and Pearl River) Delta over the Last 30 Years and Predication for the Next 40 Years (2030). Acta Geographica Sinica, 48(5): 385-393 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB199305000.htm [13] Shen, S.L., Xu, Y.S., 2011. Numerical Evaluation of Land Subsidence Induced by Groundwater Pumping in Shanghai. Canadian Geotechnical Journal, 48(9): 1378-1392.9(2): 68-74. doi: 10.1139/T11-049 [14] Sun, H., Grandstaff, D., Shagam, R., 1999. Land Subsidence Due to Groundwater Withdrawal: Potential Damage of Subsidence and Sea Level Rise in Southern New Jersey, USA. Environmental Geology, 37(4): 290-296. doi: 10.1007/s002540050386 [15] Teatini, P., Ferronato, M., Gambolati, G., et al., 2005. A Century of Land Subsidence in Ravenna, Italy. Environmental Geology, 47(6): 831-846. doi: 10.1007/s00254-004-1215-9 [16] Wang, R.B., Sun, D.P., Geng, S.C., et al., 1994. Dynamics of Ground Subsidence and Its Effects on Geographical Environment in the Tianjin Area. Acta Geographica Sinica, 49(4): 317-323 (in Chinese with English abstract). [17] Wei, Z.X., 2002. Stress-Strain Analysis of the Fourth Confined Aquifer in Shanghai. Hydrogeology and Engineering Geology, (1): 1-4 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SWDG200201000.htm [18] Xue, Y.Q., Zhang, Y., Ye, S.J., et al., 2005. Land Subsidence in China. Environmental Geology, 48(6): 713-720. doi: 10.1007/s00254-005-0010-6 [19] Yamanaka, T., Mikita, M., Lorphensri, O., et al., 2011. Anthropogenic Changes in a Confined Groundwater Flow System in the Bangkok Basin, Thailand, Part Ⅱ: How Much Water Has Been Renewed?Hydrological Processes, 25(17): 2734-2741. doi: 10.1002/hyp.8014 [20] Yi, L.X., Zhang, F., Xu, H., et al., 2011. Land Subsidence in Tianjin, China. Environmental Earth Sciences, 62(6): 1151-1161. doi: 10.1007/s12665-010-0604-5 [21] Yu, Z.T., 2006. Investigation and Study of Salt Water Intrusion on the South Coast Plain of Laizhou Bay (Dissertation). Ocean University of China, Qingdao (in Chinese with English abstract). [22] Zhang, Y., Xue, Y.Q., Li, Q.F., 2003. Current Prominent Subsidence Layer and Its Deformation Properties in Shanghai. Hydrogeology and Engineering Geology, (5): 6-11 (in Chinese with English abstract). http://www.researchgate.net/publication/285502421_Current_prominent_subsidence_layer_and_its_deformation_properties_in_Shanghai [23] 别君, 黄海军, 樊辉, 等, 2006. 现代黄河三角洲地面沉降及其原因分析. 海洋地质与第四纪地质, 26(4): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200604005.htm [24] 胡惠民, 沈永坚, 1991. 华北地区及其主要城市地面沉降的演变和发展. 中国地质灾害与防治学报, 2(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH199104000.htm [25] 李广雪, 庄克琳, 姜玉池, 2000. 黄河三角洲沉积体的工程不稳定性. 海洋地质与第四纪地质, 20(2): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002003.htm [26] 刘桂仪, 2001. 鲁北平原深层地下水开发与环境问题. 水文地质工程地质, (3): 43-45. doi: 10.3969/j.issn.1000-3665.2001.03.012 [27] 刘青勇, 潘世兵, 武晓峰, 等, 2006. 地下水回灌补源防治咸水入侵技术研究——以山东省广饶县为例. 自然灾害学报, 15(3): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200603017.htm [28] 牛修俊, 1998. 地层的固结特性与地面沉降临界水位控沉. 中国地质灾害与防治学报, 9(2): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH802.011.htm [29] 秦伟颖, 庄新国, 黄海军, 2008. 现代黄河三角洲地区地面沉降的机理分析. 海洋科学, 32(8): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX200808009.htm [30] 任美锷, 1993. 黄河长江珠江三角洲近30年海平面上升趋势及2030年上升量预测. 地理学报, 48(5): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB199305000.htm [31] 王若柏, 孙东平, 耿世昌, 等, 1994. 天津地区地面沉降及其对地理环境的影响. 地理学报, 49(4): 317-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB404.003.htm [32] 魏子新, 2002. 上海市第四承压含水层应力-应变分析. 水文地质工程地质, (1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200201000.htm [33] 于治通, 2006. 莱洲湾南岸淄河下游咸水入侵调查与研究(硕士学位论文). 青岛: 中国海洋大学. [34] 张云, 薛禹群, 李勤奋, 2003. 上海现阶段主要沉降层及其变形特征分析. 水文地质工程地质, (5): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200305002.htm