Identification of Potential Fault Zones and Its Geological Significance in Bohai Bay Basin
-
摘要: 隐性断裂带是区域或局部应力场、基底断裂体系活动、潜山块体扭动影响下在沉积盆地盖层中产生的断裂趋势带, 它是断裂带的一种类型, 与显性断裂伴生于沉积盆地, 但由于其不具有显性断裂的固有特征, 隐蔽性强而常常被忽略.可以通过以下7个方面有效识别隐性断裂带: ①小型显性构造(小断层、小褶皱、断块)呈雁列式、断续状、错位对称式反映的大型隐性断裂带; ②基底断裂体系活动在沉积盆地盖层中产生的隐性断裂带; ③潜山、凹陷分布形成的线状、调节型或者侧列式隐性断裂带; ④砂体分布反映的隐性断裂带; ⑤油藏排列、分布、走向反映的隐性断裂带; ⑥相干体切片显示的隐性断裂带; ⑦断层叠覆端、末端、深大断裂分段活动等局部应力场变化形成的隐性断裂带.应用上述方法开展渤海湾盆地隐性断裂带识别研究, 综合国内外的调研结果, 建立了隐性断裂带的类型划分方案体系并阐述了不同级别构造单元中隐性断裂带的类型特征.研究表明, 隐性断裂带具有多方面的地质意义, 可以作为调节构造带调节盆地不均匀伸展活动, 分隔凹陷、隆起等构造单元; 控制盆地沉积相带发育分布, 影响断陷湖盆砂体的展布范围; 控制圈闭组合排列、改造输导体系, 形成串珠状、带状油气富集区; 深断裂活动触发地震的过程中会在地表形成隐性断裂带, 因此, 隐性断裂带的识别和分析具有现实意义.Abstract: Potential fault zones refer to the fault zones which are influenced by regional or local stress field, basement rift activities, buried hill blocks twist and formed in the cover layer of sedimentary basin. It is a type of fault zone associated with dominant fault, which is often ignored because of the absence of inherent characteristics of dominant faults. It can be identified from 7 aspects below: ① large potential fault zones reflected by en-echelon, intermittent, dislocation of symmetrical arranged small dominant structure (small faults, small folds, fault blocks); ② potential fault zones produced by basement rift system activities; ③ linear, accommodated or side arranged potential fault zones formed by buried hills and sags; ④ potential fault zones reflected by the distribution of sandstone bodies; ⑤ potential fault zones reflected by the distribution, arrangement and strike of reservoirs; ⑥ potential fault zones reflected by coherent body slices; ⑦ potential fault zones formed by local stress field of overlapped fault, segment activities of deep and large faults. Taking the Bohai Bay basin as an example, a classification scheme of potential fault zone is established based on research results at home and abroad, and the characteristics of the potential faults in different levels of tectonic units are discussed. Potential fault zones are proved to be of geological significance in the following aspects. Firstly, it affects the tectonic pattern of basins by adjusting the inhomogeneous extension activities among different faulted blocks in basins and by separating the tectonic units such as sags and uplifts etc.. Secondly, it determines the development and distribution of basin sedimentary facies and influences the distribution range of the sandstone in faulted basin. Thirdly, it yields bead string-like, belt-like, and ring-like oil-gas accumulation zones. The activities of deep faults are prone to induce earthquake and form the potential fault zones on the surface. Therefore, identification and analysis of potential fault zones can be important in reality.
-
图 5 歧口凹陷转换型隐性断裂带(据王家豪等,2010略改)
a.岐口凹陷构造;b.3320ms相干体切片;c.1320ms相干体切片
Fig. 5. Transformation type of potential fault zones in Qikou sag
图 8 歧口凹陷隐性断裂带对沉积体系展布的控制(据吴永平等,2010略改)
Fig. 8. The control of potential fault zone in the distribution of depositional system in Qikou Depression
图 9 邢台地震区地壳结构构造剖面(据刘保金等,2011)
1.保定-石家庄断裂的拆离面;2.壳内低速层;3.高角度深断裂;4.主要震源破裂带;5.震源破裂扩展方向;6.右旋平移;7.P波速度(km/s)
Fig. 9. The cross section of crustal structure in earthquake area of Xingtai
表 1 隐性断裂带分类
Table 1. The classification of potential fault zones
规模大小 盆地级 坳陷级 凹陷级 洼陷级 圈闭级 力学性质 拉张型 挤压型 走滑型 张扭型 压扭型 成因地质背景 裂谷盆地 前陆盆地 走滑拉分盆地 克拉通盆地 叠合型盆地 组成成分 雁列构造型 凹陷侧列型 断续断层型 油藏串珠型 复杂构造型 按走向 北东向 北西向 南北向 东西向 弧形 趋势带宽度 超宽趋势带(>100km) 宽趋势带(50~100km) 中带(10~50km) 窄带(1~10km) 线状带(<1km) 按演化程度 早期弱雁列式 早中期强雁列式 中期断续状 中后期串状 后期显性断裂 平面特征 隐伏型 转换型 不连续型 准成熟型 复合型 地质意义 调节型 控凹型 控相型 控藏型 控震型 -
[1] Bellahsen, N., Daniel, J.M., 2005. Fault Reactivation Control on Normal Fault Growth: An Experimental Study. Journal of Structural Geology, 27(4): 769-780. doi: 10.1016/j.jsg.2004.12.003 [2] Crook, A.J.L., Willson, S.M., Yu, J.G., et al., 2006. Predictive Modelling of Structure Evolution in Sandbox Experiments. Journal of Structural Geology, 28(5): 729-744. doi: 10.1016/j.jsg.2006.02.002 [3] Hardy, S., 2011. Cover Deformation above Steep, Basement Normal Faults: Insights from 2D Discrete Element Modeling. Marine and Petroleum Geology, 28(5): 966-972. doi: 10.1016/j.marpetgeo.2010.11.005 [4] Hardy, S., 2013. Propagation of Blind Normal Faults to the Surface in Basaltic Sequences: Insights from 2D Discrete Element Modeling. Marine and Petroleum Geology, 48: 149-159. doi: 10.1016/j.marpetgeo.2013.08.012 [5] Hu, S.Y., Yu, Y.J., Dong, D.Z., et al., 2006. Control of Fault Activity on Hydrocarbon Accumulation in Central Junggar Basin. Acta Petrolei Sinica, 27(1): 1-7 (in Chinese with English abstract). doi: 10.1111/j.1745-7254.2006.00255.x [6] Jackson, C.A.L., Rotevatn, A., 2013.3D Seismic Analysis of the Structure and Evolution of a Salt-Influenced Normal Fault Zone: A Test of Competing Fault Growth Models. Journal of Structural Geology, 54: 215-234. doi: 10.1016/j.jsg.2013.06.012 [7] Lao, H.G., Wu, K.Y., Chen, Q.H., et al., 2012. Evolution Characteristics of Maozhou Transition Zone and Its Control Function of Reservoirs Forming in Jizhong Depression. Journal of China University of Petroleum, 36(5): 12-19 (in Chinese with English abstract). http://www.researchgate.net/publication/286596101_Evolution_characteristics_of_Maozhou_transition_zone_and_its_control_function_of_reservoirs_forming_in_Jizhong_depression [8] Li, M.G., Qi, J.F., Yang, Q., et al., 2009. Cenozoic Structure Features of Huanghua Depression and Its Structure Dynamics Model. Acta Geoscientica Sinica, 30(2): 201-209 (in Chinese with English abstract). [9] Li, S.Z., Suo, Y.H., Zhou, L.H., et al., 2011. Pull-Apart Basin witnin the North China Craton: Structural Pattern and Evolution of Huanghua Depression in Bay Basin. Journal of Jilin University (Earth Science Edition), 41(5): 1362-1378 (in Chinese with English abstract). http://www.researchgate.net/publication/279594354_Pull-apart_basins_within_the_North_China_Craton_structural_pattern_and_evolution_of_the_Huanghua_Depression_in_the_Bohai_Bay_Basin [10] Liu, B.J., Qu, G.S., Sun, M.X., et al., 2011. Crustal Structure and Tectonics of the Tangshan Earthquake Area: Results from Deep Seismic Reflection Profiling Results. Seismology and Geology, 33(4): 901-912 (in Chinese with English abstract). [11] Mitra, S., Miller, J.F., 2013. Strain Variation with Progressive Deformation in Basement-Involved Trishear Structures. Journal of Structural Geology, 53: 70-79. doi: 10.1016/j.jsg.2013.05.007 [12] Morley, C.K., 1999. How Successful Are Analogue Models in Addressing the Influence of Pre-Existing Fabrics on Rift Structure?Journal of Structural Geology, 21(8-9): 1267-1274. doi: 10.1016/S0191-8141(99)00075-9 [13] Qi, J.F., 2004. Two Tectonic Systems in the Cenozoic Bohai Bay Basin and Their Genetic Interpretation. Geology in China, 31(1): 15-22 (in Chinese with English abstract). [14] Wang, J.H., Wang, H., Ren, J.Y., et al., 2010. A Great Oblique Transition Zone in the Central Huanghua Depression and Its Significance for Petroleum Exploration. Acta Petrolei Sinica, 31(3): 355-360 (in Chinese with English abstract). doi: 10.1038/aps.2010.10 [15] Wang, Z.C., Zhao, W.Z., Men, X.Y., et al., 2005. Control of Basement Fault Minor-Activity on Gas Pool Formation of Upper Paleozoic, Ordos Basin. Petroleum Exploration and Development, 32(1): 9-13 (in Chinese with English abstract). [16] Wu, Y.P., Yang, C.Y., Wang, H., et al., 2010. Integrated Study of Tectonics-Sequence Stratrigraphy-Sedimentology in the Qikou Sag and Its Application. Geotectonica et Metallogenia, 34(4): 451-460 (in Chinese with English abstract). [17] Xu, J., Zhou, B.G., Ji, F.J., et al., 2012. Features of Seismogenic Structures of Great Earthquakes in the Bohai Bay Basin Area, North China. Seismology and Geology, 34(4): 618-636 (in Chinese with English abstract). [18] Yang, M.H., 2009. Transfer Structure and Its Relation to Hydrocarbon Exploration in Bohai Bay Basin. Acta Petrolei Sinica, 30(6): 816-823 (in Chinese with English abstract). [19] Yang, X.S., Liu, C.Y., Yang, B.Y., et al., 2004. Characteristics and Evolution of Hengshui Transfer Fault Zones in Jizhong Depression. Coal Geology & Exploration, 32(3): 5-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT200403001.htm [20] Zhao, W.Z., Hu, S.Y., Wang, Z.C., et al., 2003. Key Role of Basement Fault Control on Oil Accumulation of Yangchang Formation, Upper Triassic, Ordos Basin. Petroleum Exploration and Development, 30(5): 1-5 (in Chinese with English abstract). http://www.researchgate.net/publication/287675062_Key_role_of_basement_fault_control_on_oil_accumulation_of_Yanchang_Formation_Uppe_Triassic_Ordos_Basin [21] 胡素云, 蔚远江, 董大忠, 等, 2006. 准噶尔盆地腹部断裂活动对油气聚集的控制作用. 石油学报, 27(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200601000.htm [22] 劳海港, 吴孔友, 陈清华, 等, 2012. 冀中坳陷鄚州变换带演化特征及控藏作用. 中国石油大学学报(自然科学版), 36(5): 12-19. doi: 10.3969/j.issn.1673-5005.2012.05.003 [23] 李明刚, 漆家福, 杨桥, 等, 2009. 渤海湾盆地黄骅坳陷新生代结构特征及构造动力学模式. 地球学报, 30(2): 201-209. doi: 10.3321/j.issn:1006-3021.2009.02.007 [24] 李三忠, 索艳慧, 周立宏, 等, 2011. 华北克拉通内部的拉分盆地: 渤海湾盆地黄骅坳陷结构构造与演化. 吉林大学学报(地球科学版), 41(5): 1362-1378. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105011.htm [25] 刘保金, 曲国胜, 孙铭心, 等, 2011. 唐山地震区地壳结构和构造: 深地震反射剖面结果. 地震地质, 33(4): 901-912. doi: 10.3969/j.issn.0253-4967.2011.04.014 [26] 漆家福, 2004. 渤海湾盆地新生代盆地的两种构造系统及其成因解释. 中国地质, 31(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200401001.htm [27] 王家豪, 王华, 任建业, 等, 2009. 黄骅坳陷中区大型斜向变换带及其油气勘探意义. 石油学报, 31(3): 355-360. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003001.htm [28] 汪泽成, 赵文智, 门相勇, 等, 2005. 基底断裂"隐性活动"对鄂尔多斯盆地上古生界天然气成藏的作用. 石油勘探与开发, 32(1): 9-13. doi: 10.3321/j.issn:1000-0747.2005.01.003 [29] 吴永平, 杨池银, 王华, 等, 2010. 歧口凹陷构造-层序-沉积一体化研究及其应用. 大地构造与成矿学, 34(4): 451-460. doi: 10.3969/j.issn.1001-1552.2010.04.001 [30] 徐杰, 周本刚, 计凤桔, 等, 2012. 华北渤海湾盆地区大震发震构造的基本特征. 地震地质, 34(4): 618-636. doi: 10.3969/j.issn.0253-4967.2012.04.008 [31] 杨明慧, 2009. 渤海湾盆地变换构造特征及其成藏意义. 石油学报, 30(6): 816-823. doi: 10.3321/j.issn:0253-2697.2009.06.004 [32] 杨旭升, 刘池阳, 杨斌谊, 等, 2004. 冀中坳陷衡水转换断裂带特征及演化. 煤田地质与勘探, 32(3): 5-8. doi: 10.3969/j.issn.1001-1986.2004.03.002 [33] 赵文智, 胡素云, 汪泽成, 等, 2003. 鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用. 石油勘探与开发, 30(5): 1-5. doi: 10.3321/j.issn:1000-0747.2003.05.001