• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海东沙海域末次冰期异常沉积事件与水合物分解

    陈芳 庄畅 张光学 陆红锋 段虓 周洋 苏新 吴聪 刘广虎

    陈芳, 庄畅, 张光学, 陆红锋, 段虓, 周洋, 苏新, 吴聪, 刘广虎, 2014. 南海东沙海域末次冰期异常沉积事件与水合物分解. 地球科学, 39(11): 1517-1526. doi: 10.3799/dqkx.2014.144
    引用本文: 陈芳, 庄畅, 张光学, 陆红锋, 段虓, 周洋, 苏新, 吴聪, 刘广虎, 2014. 南海东沙海域末次冰期异常沉积事件与水合物分解. 地球科学, 39(11): 1517-1526. doi: 10.3799/dqkx.2014.144
    Chen Fang, Zhuang Chang, Zhang Guangxue, Lu Hongfeng, Duan Xiao, Zhou Yang, Su Xin, Wu Cong, Liu Guanghu, 2014. Abnormal Sedimentary Events and Gas Hydrate Dissociation in Dongsha Area of the South China Sea during Last Glacial Period. Earth Science, 39(11): 1517-1526. doi: 10.3799/dqkx.2014.144
    Citation: Chen Fang, Zhuang Chang, Zhang Guangxue, Lu Hongfeng, Duan Xiao, Zhou Yang, Su Xin, Wu Cong, Liu Guanghu, 2014. Abnormal Sedimentary Events and Gas Hydrate Dissociation in Dongsha Area of the South China Sea during Last Glacial Period. Earth Science, 39(11): 1517-1526. doi: 10.3799/dqkx.2014.144

    南海东沙海域末次冰期异常沉积事件与水合物分解

    doi: 10.3799/dqkx.2014.144
    基金项目: 

    国家自然科学基金项目 41372012

    国家重点基础发展研究规划项目 2009CB219502

    国家专项项目课题 GZH2011003050602

    详细信息
      作者简介:

      陈芳(1966-), 女, 教授级高级工程师, 主要从事微体古生物学和水合物研究.E-mail: zhchenfang66@21cn.com

    • 中图分类号: P67

    Abnormal Sedimentary Events and Gas Hydrate Dissociation in Dongsha Area of the South China Sea during Last Glacial Period

    • 摘要: 对南海东沙海域陆坡区973-3柱状样开展沉积学和年代学、有孔虫同位素和壳体B/Ca比值、碳酸钙和黄铁矿含量的分析, 发现该岩芯浮游有孔虫Globigerinoides ruber和底栖有孔虫Uvigerina peregrinaδ13C在末次冰期同时在多个层位发生负偏, 最大负偏达-2.03‰; 有孔虫δ13C负偏层位环境[CO32-]浓度相对偏低; 负偏层位同时出现大量黄铁矿, 最高含量达17%.在负偏层位以下沉积的碳酸盐溶解作用强烈, CaCO3含量最低, 沉积物颜色偏深.究其成因与水合物分解关系较大.甲烷渗漏事件发生在末次冰期, 说明末次冰期的海平面下降是水合物分解的主要诱因.根据有孔虫δ13C负偏的次数和程度推断至少发生过4次甲烷渗漏, 渗漏的强度基本相当.

       

    • 图  1  东沙海域研究站位位置

      Fig.  1.  Location of studied piston core in Dongsha area

      图  2  973-3柱状样岩性与沉积特征

      Fig.  2.  Lithology and sedimentary features of 973-3PC

      图  3  973-3柱状样地层划分

      Fig.  3.  Stratigraphic division of 973-3PC

      图  4  973-3柱状样浮游有孔虫G.ruber和底栖有孔虫U.peregrina碳同位素特征

      Fig.  4.  Planktonic and benthic foraminifera carbon isotope records of 973-3PC

      图  7  973-3柱状样异常沉积事件与水合物的分解过程示意

      Fig.  7.  Abnormal sedimentary events and gas hydrates dissociation process from 973-3PC

      图  5  973-3柱状样粗组分含量变化曲线与组成(显微镜照片)

      Fig.  5.  Coarse fraction content (%) and its components (micro-photos) of 973-3PC

      图  6  973-3柱状样黄铁矿含量变化及其显微镜照片

      Fig.  6.  Content of pyrite of 973-3PC

      图  8  973-3柱状样990cm处褐红色粗组分XRD成分分析结果

      Fig.  8.  The XRD component analysis of coarse fraction from 973-3PC(990cm)

      图  9  973-3柱状样有孔虫δ13C负偏层位(690~695cm,770~775cm)的壳体扫描电镜照片

      Fig.  9.  SEM images of foraminifera U. peregrina (a) and G. ruber (b, c, d) which δ13C depletion

      表  1  973-3柱状样AMS14C测年结果

      Table  1.   AMS14C dating results of 973-3PC

      样品深度(cm) 样品性质 δ13C(‰) 14C测试结果(aBP) δ13C同位素分馏校正 14C校正年代(aBP, 1σ)
      50~55 G.ruber+G.sacculifer 2.01 3335±45 3781±45 4138±48
      100~105 G.ruber+G.sacculifer 1.38 4415±40 4850±40 5600±17
      226~231 G.ruber+G.sacculifer 2.28 10270±80 10721±80 12773±63
      239~243 G.ruber+G.sacculifer 2.11 12230±60 12678±60 14976±134
      274~279 G.ruber+G.sacculifer -1.97 26850±180 27229±180 27229±180
      282~285 G.ruber+G.sacculifer 1.66 26370±200 26810±200 26810±200
      400~405 G.ruber+G.sacculifer 2.04 38520±310 38967±310 38967±310
      500~505 G.ruber+G.sacculifer 0.44 40960±340 41379±340 41379±340
      600~605 G.ruber+G.sacculifer -1.30 29520±190 29910±190 29910±190
      700~705 G.ruber+G.sacculifer -0.84 42210±360 42608±360 42608±360
      下载: 导出CSV
    • [1] Bhaumik, A.K., Gupta, A.K., 2007. Evidence of Methane Release from Blake Ridge ODP Hole 997A during the Plio-Pleistocene: Benthic Foraminifer Fauna and Total Organic Carbon. Current Science, 92(2): 192-199.
      [2] Cao, C., Lei, H.Y., 2012. Respondence between Carbon and Oxygen Isotopic Characteristics of Foraminifera from the Northern South China Sea and Late Quaternary Hydrate Released. Journal of Jilin University (Earth Science Edition), 42(Suppl. 1): 162-171 (in Chinese with English abstract). http://www.researchgate.net/publication/286202683_Respondence_between_carbon_and_oxygen_isotopic_characteristics_of_foraminifera_from_the_northern_South_China_Sea_and_late_Quaternary_hydrate_released
      [3] Chen, Z., Yan, W., Chen, M.H., et al., 2006. Discovery of Seep Carbonate Nodules as New Evidence for Gas Venting on the Northern Continental Slope of South China Sea. Chinese Science Bulletin, 51(9): 1065-1072 (in Chinese). doi: 10.1007/s11434-006-1065-9
      [4] Dickens, G.R., O'Neil, J.R., Rea, D.K., et al., 1995. Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene. Paleoceanography, 10(6): 965-971. doi: 10.1029/95PA02087
      [5] Department of Marine Geology, Tongji University, 1989. Introduction to Paleoceanography. Tongji University Press, Shanghai, 163.
      [6] Han, X.Q., Suess, E., Huang, Y.Y., et al., 2008. Jiulong Methane Reef: Microbial Mediation of Seep Carbonates in the South China Sea. Marine Geology, 249(3-4): 243-256. doi: 10.1016/j.margeo.2007.11.012
      [7] Han, X.Q., Suess, E., Liebetrau, V., et al., 2014. Past Methane Release Events and Environmental Conditions at the Upper Continental Slope of the South China Sea: Constraints by Seep Carbonates. Int. J. Earth Sci. (Geol. Rundsch), 103: 1873-1887. doi: 10.1007/s00531-014-1018-5
      [8] Hinrichs, K.U., Hmelo, L.R., Sylva, S.P., 2003. Molecular Fossil Record of Elevated Methane Levels in Late Pleistocene Coastal Waters. Science, 299: 1214-1217. doi: 10.1126/science.1079601
      [9] Jiang, G. Q, Shi, X.Y., Zhang, S.H., 2006. Methane Seepage Structure, Gas Hydrate Dissociation and Neoproterozoic Postglacial Cap Carbonates. Chinese Science Bulletin, 51(10): 1121-1138 (in Chinese). doi: 10.1360/csb2006-51-10-1121
      [10] Keigwin, L.D., 2002. Late Pleistocene-Holocene Paleoceanography and Ventilation of the Gulf of California. Journal of Oceanography, 58(2): 421-432. doi: 10.1023/A:1015830313175
      [11] Kennett, J.P., Cannariato, K.G., Hendy, I.L., et al., 2000. Carbon Isotopic Evidence for Methane Hydrate Instability during Quaternary Interstadials. Science, 288(5463): 128-133. doi: 10.1126/science.288.5463.128
      [12] Kennett, J.P., Stott, L.D., 1991. Abrupt Deep-Sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene. Nature, 353(6341): 225-229. doi: 10.1038/353225a0
      [13] Li, Q., Wang, J.S., Cai, F., et al., 2010. Carbon and Oxygen Stable Isotopes of Benthic Foraminifera as Possible Indicators of Episodic Methane Seeps in Gas Hydrate Geo-System—A Study from IODP Expedition 311. Marine Geology Frontiers, 27(6): 29-36 (in Chinese with English abstract).
      [14] Lu, H.F., Chen, F., Liu, J., et al., 2010. Mineralogies and Stable Isotopic Compositions of Methane-Derived Carbonates from the Northeastern South China Sea. Marine Geology & Quaternary Geology, 30(2): 51-59. doi: 10.3724/sp.j.1140.2010.02051
      [15] Lu, H.F., Liu, J., Chen, F., et al., 2005. Mineralogy and Stable Isotopic Composition of Authigenic Carbonates in Bottom Sediments in the Offshore Area of Southwest Taiwan, South China Sea: Evidence for Gas Hydrates Occurrence. Earth Science Frontiers, 13(3): 268-276 (in Chinese with English abstract).
      [16] Lu, H.F., Liu, J., Chen, F., et al., 2012. Shallow Sulfate-Methane Interface in Northeastern South China Sea: An Indicator of Strong Methane Seepage on Seafloor. Marine Geology & Quaternary Geology, 32(1): 93-98 (in Chinese with English abstract). doi: 10.3724/sp.j.1140.2012.01093
      [17] Lu, M.A., Ma, Z.J., Chen, M.H., et al., 2002. Rapid Carbon-Isotope Negative Excursion Events during the Penultimate Deglaciation in Western Pacific Marginal Sea Areas and Their Origins. Quaternary Sciences, 22(4): 349-358 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200204006.htm
      [18] Luan, X.W., 2009. Sulfate-Methane Interface: The Upper Boundary of Gas Hydrate Zone. Marine Geology & Quaternary Geology, 29(2): 91-102 (in Chinese with English abstract). doi: 10.3724/sp.j.1140.2009.02091
      [19] Prokopenko, A.A., Williams, D.F., 2004. Deglacial Methane Emission Signals in the Carbon Isotopic Record of Lake Baikal. Earth and Planetary Science Letters, 218: 135-147. doi: 10.1016/S0012-821X(03)00637-X
      [20] Qiao, P.J., Wang, T.T., Jian, Z.M., 2012. Potential of Foraminiferal B/Ca Ratios for Reconstructing Paleo-Seawater pH and CO32- Concentrations. Advances in Earth Science, 27(6): 686-693 (in Chinese with English abstract).
      [21] Sassen, R., Roberts, H.H., Carney, R., et al., 2004. Free Hydrocarbon Gas, Gas Hydrate, and Authigenic Minerals in Chemosynthetic Communities of the Northern Gulf of Mexico Continental Slope: Relation to Microbial Processes. Chemical Geology, 205(3-4): 195-217. doi: 10.1016/j.chemgeo.2003.12.032
      [22] Smith, L.M., Sachs, J.P., Jenning, A.E., et al., 2001. Light δ13C Events during Deglaciation of the East Green Land Continental Shelf Attributed to Methane Release from Gas Hydrates. Geophysical Research Letters, 28(11): 2217-2220. doi: 10.1029/2000GL012627
      [23] Suess, E., 2011. Marine Gas Hydrate Research: Changing Views over the Past 25 Years. Proceeding of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21.
      [24] Tong, H.P., Feng. D., Chen. H., et al., 2013. Authigenic Carbonates from Seeps on the Northern Continental Slope of the South China Sea: New Insights into Fluid Sources and Geochronology. Marine and Petroleum Geology, 43: 260-271. doi: 10.1016/j.marpetgeo.2013.01.011
      [25] Uchida, M., Shibata, Y., Ohkushi, K., et al., 2004. Episodic Methane Release Events from Last Glacial Marginal Sediments in the Western North Pacific. Geochemistry, Geophysics, Geosystems, 5: Q08005. doi:10.1029 /2004GC000699
      [26] Wang, S.H., Yan, W., Chen, Z., et al., 2010. Carbon Isotope Evidence of Gas Hydrate Dissociation in South China Sea. Earth Science—Journal of China University of Geosciences, 35(4): 526-532 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.608
      [27] Yu, J.M., Day, J., Greaves, M., et al., 2005. Determination of Multiple Element/Calcium Ratios in Foraminiferal Calcite by Quadrupole ICPMS. Geochemistry, Geophysics, Geosystems, 6: Q08P01. doi:10.1029 /2005GC000964
      [28] Zachos, J.C., Rohl, U., Schellenberg, S.A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308(5728): 1611-1615. doi: 10.1126/science.1109004
      [29] Zhang, G.X., Yang, S.X., Zhang, M., et al., 2014. GMG2 Expedition Investigates Rich and Complex Gas Hydrate Environment in the South China Sea. Fire in the Ice, 14(1): 1-5.
      [30] 曹超, 雷怀彦, 2012. 南海北部有孔虫碳氧同位素特征与晚第四纪水合物分解的响应关系. 吉林大学学报(地球科学版), 42(增刊1): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S1021.htm
      [31] 陈忠, 颜文, 陈木宏, 等, 2006. 南海北部冷泉碳酸盐结核的发现: 海底天然气渗漏活动的新证据. 科学通报, 51(9): 1065-1072. doi: 10.3321/j.issn:0023-074X.2006.09.011
      [32] 蒋干清, 史晓颖, 张世红, 2006. 甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩. 科学通报, 51(10): 1121-1138. doi: 10.3321/j.issn:0023-074X.2006.10.001
      [33] 李清, 王家生, 蔡峰, 等, 2010. 天然气水合物系统多幕次甲烷渗漏作用的底栖有孔虫同位素响应——以IODP311航次为例. 海洋地质前沿, 27(6): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201106006.htm
      [34] 陆红锋, 刘坚, 陈芳, 等, 2005. 南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气水合物存在的主要证据之一. 地学前缘, 13(3): 268-276. doi: 10.3321/j.issn:1005-2321.2005.03.030
      [35] 陆红锋, 刘坚, 陈芳, 等, 2012. 南海东北部硫酸盐还原-甲烷厌氧氧化界面——海底强烈甲烷渗漏的记录. 海洋地质与第四纪地质, 32(1): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201201018.htm
      [36] 卢苗安, 马宗晋, 陈木宏, 等, 2002. 倒数第二次冰消期西太平洋边缘海地区δ13C值快速负偏事件及其成因. 第四纪研究, 22(4): 349-358. doi: 10.3321/j.issn:1001-7410.2002.04.007
      [37] 栾锡武, 2009. 天然气水合物的上界面——硫酸还原-甲烷厌氧氧化界面. 海洋地质与第四纪地质, 29(2): 91-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200902017.htm
      [38] 同济大学海洋地质系, 1989. 古海洋学概论. 上海: 同济大学出版社, 163.
      [39] 乔培军, 王婷婷, 翦知湣, 2012. 利用有孔虫壳体B/Ca比值再造古海水pH值及[CO32-]的潜力. 地球科学进展, 27(6): 686-693. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201206012.htm
      [40] 王淑红, 颜文, 陈忠, 等, 2010. 南海天然气水合物分解的碳同位素证据. 地球科学——中国地质大学学报, 35(4): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004006.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  3762
    • HTML全文浏览量:  138
    • PDF下载量:  438
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-04-03
    • 刊出日期:  2014-11-01

    目录

      /

      返回文章
      返回